Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)4n2-3n-1 chia hết cho 4n-1
<=>4n2-n-2n-1 chia hết cho 4n-1
<=>n(4n-1)-(2n+1) chia hết cho 4n-1
<=>2n+1 chia hết cho 4n-1
<=>2(2n+1) chia hết cho 4n-1
<=>4n-1+3 chia hết cho 4n-1
<=>3 chia hết cho 4n-1
=>4n-1 thuộc Ư(3)
=>Ư(3)={-1;1;-3;3}
Ta có bảng sau:
4n-1 | -1 | 1 | -3 | 3 |
n | 0 | 1/2 | -1/2 | 1 |
KL | tm | loại | loại | tm |
Vậy n thuộc {0;1}
b)4n2-3n-1 chia hết cho n-1
<=>4n2-4n+n-1 chia hết cho n-1
<=>4n(n-1)+n-1 chia hết cho n-1
<=>(4n+1)(n-1) chia hết cho n-1
<=>n thuộc N với mọi gtrị
P/s: "chia hết cho" thì viết kí hiệu vô
Is that T :))
a) Đặt \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=k\)
\(\Rightarrow k=\frac{x}{a+2b+c}=\frac{2y}{4a+2b-2c}=\frac{z}{4a-4b+c}=\frac{x+2y+z}{a+2b+c+4a+2b-2c+4a-4b+c}=\frac{x+2y+z}{9a}\)
\(\Rightarrow\frac{a}{x+2y+z}=\frac{k}{9}\)
Tương tự :\(\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}=\frac{k}{9}\)
Vậy ..........
a)
Ta có
\(4^{21}=\left(4^4\right)^5.4=\left(\overline{...6}\right)^5.4=\left(\overline{...6}\right).4=\left(\overline{....4}\right)\)
=> 4^21 có tận cùng là 4
b)
Ta có
\(9^{53}=\left(9^4\right)^{13}.9=\left(\overline{.....1}\right)^{13}.9=\left(\overline{.....1}\right).9=\left(\overline{....9}\right)\)
=> 9^93 có tận cùng là 9
c)
\(3^{103}=\left(3^4\right)^{25}.3^3=\left(\overline{.....1}\right)^{25}.27=\left(\overline{.....1}\right).27=\left(\overline{....7}\right)\)
=> 3^103 có tận cùng là 7
d)
\(8^{4n+1}=\left(8^4\right)^n.8=\left(\overline{....6}\right)^n.8=\left(\overline{......6}\right).8=\left(\overline{.....8}\right)\)
=> 8^4n+1 có tận cùng là 8
\(4^{21}=\left(...4\right)\)
Do: các số có tận cùng là 4 thì khi nâng lũy thừa bậc lẻ thì số tận cùng giữ nguyên.
\(9^{53}=...9\)
Do: các số có tận cùng là 9 thì khi nâng lũy thừa bậc 4n thì số tận cùng giữ nguyên.
\(3^{301}=3.3^{300}=3.\left(...1\right)=....3\)
Do: các số có tận cùng là 3 thì khi nâng lũy thừa bậc lẻ thì số tận cùng là 1.
\(8^{4n+1}=8.8^{4n}=8.\left(...6\right)=...8\)
Do: các số có tận cùng là 8 thì khi nâng lũy thừa bậc 4n thì số tận cùng là 6.
25S = 1 - 1/52+1/54- 1/56+.......+1/52008- 1/52010
Cộng 2 vế với S ta có :
26S = 1 - 1/52012 < 1 suy ra S< 1/26
\(5^2.S=1-\frac{1}{5^2}+\frac{1}{5^4}-.....+\frac{1}{5^{2008}}-\frac{1}{5^{2010}}\)
\(25S=1-\frac{1}{5^2}+\frac{1}{5^4}-...+\frac{1}{5^{2008}}-\frac{1}{5^{2010}}\)Cộng 2 vế với S ta có
\(26S=1-\frac{1}{5^{2012}}\)\(\Rightarrow26S< 1\Rightarrow S< \frac{1}{26}\)
a, Để 3/(n-1) nguyên
<=> 3 chia hết cho n-1
Mà n-1 nguyên
=> n-1 thuộc Ư(3)={-3,-1,1,3}
=> n=-2,0,2,4
Giải giúp mk cụ thể từng bước nhak mấy p
Mình không hiểu lắm bạn à ... nó không có kết quả cụ thể sao ?