K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có

BK,CI là đường cao

BK cắt CI tại H

=>H là trực tâm

=>AH vuông góc BC

b: góc HBC+góc HCB

=90 độ-góc ABC+90 độ-góc ACB

=180 độ-góc ABC-góc ACB

=góc BAC=70 độ

=>góc BHC=110 độ

a)

Ta có: ΔABC cân tại A(gt)

mà AM là đường phân giác ứng với cạnh đáy BC(gt)

nên AM là đường cao ứng với cạnh BC(Định lí tam giác cân)

\(\Leftrightarrow AM\perp BC\)

Xét ΔABC có 

AM là đường cao ứng với cạnh BC(cmt)

BK là đường cao ứng với cạnh AC(Gt)

AM cắt BK tại I(Gt)

Do đó: I là trực tâm của ΔBAC(Tính chất ba đường cao của tam giác)

Suy ra: CI\(\perp\)AB(Đpcm)

NA
Ngoc Anh Thai
Giáo viên
4 tháng 4 2021

undefined

a) Tam giác ABC cân tại A có AM là phân giác, do đó AM cũng là đường cao
AM vuông góc với BC
Lại có BK vuông góc với AC
Do đó I là trực tâm của tam giác ABC
Vậy CI vuông góc với AB

b) Tam giác BDH = tam giác DBP (ch.gn)

Do đó BH = DP

BDKQ là hình chữ nhật => DP = HK

=> BK = BH + HK = DP + DQ (đpcm)

a: Xét ΔABC có

AM,BK là đường cao

AM cắt BK tại I

=>I là trực tâm

=>CI vuông góc AB tại N

b:

Xet ΔAKB vuông tại K và ΔANC vuông tại N có

AB=AC
góc KAB chung

=>ΔAKB=ΔANC

=>BK=CN

DP//NC

=>DP/NC=BD/BC

=>DP/BK=BD/BC

DQ//BK

=>DQ/BK=CD/CB

=>DQ+DP=BK(BD/BC+CD/CB)=BK

25 tháng 10 2023

Xét tứ giác BHCK có

M là trung điểm chung của BC và HK

=>BHCK là hình bình hành

=>BK//CH

mà CH\(\perp\)AB

nên BK\(\perp\)BA tại B

Xét tứ giác BFCQ có

\(\widehat{BFC}=\widehat{FBQ}=\widehat{CQB}=90^0\)

=>BFCQ là hình chữ nhật

=>BFCQ nội tiếp đường tròn đường kính BC và FQ(1)

\(\widehat{BEC}=\widehat{BFC}=\widehat{BQC}=90^0\)

=>B,E,C,F,Q cùng thuộc 1 đường tròn(2)

Từ (1) và (2) suy ra E nằm trên đường tròn đường kính FQ

=>EF vuông góc với EQ

a: BC=căn 6^2+8^2=10cm

b: Xét ΔBAK vuông tại A và ΔBIK vuông tại I có

BK chung

góc ABK=góc IBK

=>ΔBAK=ΔBIK

=>KA=KI

c: góc DAI+góc BIA=90 độ

góc CAI+góc BAI=90 độ

mà góc BIA=góc BAI

nên góc DAI=góc CAI

=>AI là phân giác của góc DAC