Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có: ΔABC cân tại A(gt)
mà AM là đường phân giác ứng với cạnh đáy BC(gt)
nên AM là đường cao ứng với cạnh BC(Định lí tam giác cân)
\(\Leftrightarrow AM\perp BC\)
Xét ΔABC có
AM là đường cao ứng với cạnh BC(cmt)
BK là đường cao ứng với cạnh AC(Gt)
AM cắt BK tại I(Gt)
Do đó: I là trực tâm của ΔBAC(Tính chất ba đường cao của tam giác)
Suy ra: CI\(\perp\)AB(Đpcm)
a) Tam giác ABC cân tại A có AM là phân giác, do đó AM cũng là đường cao
AM vuông góc với BC
Lại có BK vuông góc với AC
Do đó I là trực tâm của tam giác ABC
Vậy CI vuông góc với AB
b) Tam giác BDH = tam giác DBP (ch.gn)
Do đó BH = DP
BDKQ là hình chữ nhật => DP = HK
=> BK = BH + HK = DP + DQ (đpcm)
a: Xét ΔABC có
AM,BK là đường cao
AM cắt BK tại I
=>I là trực tâm
=>CI vuông góc AB tại N
b:
Xet ΔAKB vuông tại K và ΔANC vuông tại N có
AB=AC
góc KAB chung
=>ΔAKB=ΔANC
=>BK=CN
DP//NC
=>DP/NC=BD/BC
=>DP/BK=BD/BC
DQ//BK
=>DQ/BK=CD/CB
=>DQ+DP=BK(BD/BC+CD/CB)=BK
a: BC=căn 6^2+8^2=10cm
b: Xét ΔBAK vuông tại A và ΔBIK vuông tại I có
BK chung
góc ABK=góc IBK
=>ΔBAK=ΔBIK
=>KA=KI
c: góc DAI+góc BIA=90 độ
góc CAI+góc BAI=90 độ
mà góc BIA=góc BAI
nên góc DAI=góc CAI
=>AI là phân giác của góc DAC
a, xét tam giác ABK và tam giác IBK có : BK chung
góc CAB = góc KIB = 90 do....
góc IBK = góc KBA do BK là phân giác của góc ABC (gt)
=> tam giác ABK = tam giác IBK (ch - gn)
b, tam giác ABK = tam giác IBK (câu a)
=> KI = KA (đn)
xét tam giác KIC và tam giác KAH có : góc IKC = góc AKH (đối đỉnh)
góc KAH = góc KIC = 90 do...
=> tam giác KIC = tam giác KAH (cgv - nhk)
=> CI = HA (đn) và IB = AB do tam giác ABK = tam giác IBK (câu a)
=> CI + IB = HA + AB
=> CB = HB
=> tam giác CHB cân tại B (đn)
c, xét tam giác BHM và tam giác BCM có : MB chung
CB = HB (câu b)
góc HMB = góc CMB = 90 do BM _|_ HC (gt)
=> tam giác BHM = tam giác BCM (ch - cgv)
=> góc CBM = góc HBM (đn) mà tia BM nằm giữa BC và BH
=> BM là phân giác của góc ABC (đn)
BK là phân giác của hóc ABC (gt)
=> 3 điểm B; M; K thẳng hàng
d, góc B = 60 (em đoán vậy thôi :v)
Giải
a, Xét \(\Delta ABK\) và \(\Delta IBK\) có BK chung
\(\Rightarrow\widehat{CAB}=\widehat{KIB}=90^0\)
\(\Rightarrow\widehat{IBK}=\widehat{KBA}\)do BK là phân giác của \(\widehat{ABC}\)
\(\Rightarrow\Delta ABK=\Delta IBK\)
b, \(\Rightarrow\Delta ABK=\Delta IBK\Leftrightarrow KI=KA\)
Xét \(\Delta KIC\) và \(\Delta KAH\) có \(\widehat{IKC}=\widehat{AKH}\) ( đối đỉnh )
góc KAH = góc KIC = 900
=> tam giác KIC = tam giác KAH (cgv - nhk)
=> CI = HA (đn) và IB = AB do tam giác ABK = tam giác IBK (câu a)
=> CI + IB = HA + AB
=> CB = HB
=> tam giác CHB cân tại B (đn)
c, xét tam giác BHM và tam giác BCM có : MB chung
=> CB = HB
góc HMB = góc CMB = 90 do BM _|_ HC
=> tam giác BHM = tam giác BCM
=> góc CBM = góc HBM (đn) mà tia BM nằm giữa BC và BH
=> BM là phân giác của góc ABC
BK là phân giác của hóc ABC
=> 3 điểm B; M; K thẳng hàng
d, góc B = 60