( x2 - 3x - 1) 2 - 12 ( x2 - 3x - 1) +27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{x^2+3x+2-x^2+2x+8}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x+10}{\left(x-2\right)\left(x+2\right)}=\dfrac{5}{x-2}\)
b: \(=\dfrac{x^2-4x+3-x^2-3x-2+8x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x-1}\)
c: \(=\dfrac{x+2}{x\left(x-2\right)}+\dfrac{2}{x\left(x+2\right)}+\dfrac{3x+2}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{x^2+2x+2x-4+3x+2}{x\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+7x-2}{x\left(x-2\right)\left(x+2\right)}\)
a,
\(\dfrac{x+1}{x-2}-\dfrac{x}{x+2}+\dfrac{8}{x^2-4}\\ =\dfrac{x^2+3x+2-x^2+2x+8}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x+10}{\left(x-2\right)\left(x+2\right)}=\dfrac{5\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{5}{x-2}\)
b,
\(\dfrac{x-3}{x+1}-\dfrac{x+2}{x-1}+\dfrac{8x}{x^2-1}\\ =\dfrac{x^2-4x+3-x^2-3x-2+8x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{1}{x-1}\)
a: \(\Leftrightarrow\left(x-5\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\\x=1\end{matrix}\right.\)
d: \(\Leftrightarrow\left(x+3\right)\left(x^2-4x+5\right)=0\)
\(\Leftrightarrow x+3=0\)
hay x=-3
b: \(\Leftrightarrow9x^2+12x+4-18x+12=9x^2\)
=>-6x+16=0
=>-6x=-16
hay x=8/3(nhận)
c: \(\Leftrightarrow\dfrac{x+1+x-1}{\left(x-1\right)\left(x+1\right)}=\dfrac{2}{x+2}\)
\(\Leftrightarrow2x\left(x+2\right)=2\left(x^2-1\right)\)
\(\Leftrightarrow2x^2+4x-2x^2+2=0\)
=>4x+2=0
hay x=-1/2(nhận)
a) xem lại đề
b) 3x-1=27
=>3x-1=33
=>x-1=3
=>x=3+1
=>x=4
c)3x+1=9
=>3x+1=32
=>x+1=2
=>x=2-1
=>x=1
a) x2=x3
⇒ x2-x3=0
⇒ x2-x2.x=0
⇒ x2.(x+1)=0
⇒\(\left\{{}\begin{matrix}\text{x}^2=0\\\text{x}+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\text{x}=0\\\text{x}=0+1=1\end{matrix}\right.\)
⇒ \(\text{x}\in\left\{0;1\right\}\)
b) 3x-1=27
⇒ 3x-1=33
⇒ x-1=3
⇒ x= 3+1=4
c) 3x+1=9
⇒ 3x+1= 33
⇒ x+1=3
⇒ x=3-1=2
Bài 2:
a: Ta có: \(A=\left(x+1\right)^3+\left(x-1\right)^3\)
\(=x^3+3x^2+3x+1+x^3-3x^2+3x-1\)
\(=2x^3+6x\)
b: Ta có: \(B=\left(x-3\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+\left(3x-1\right)\left(3x+1\right)\)
\(=x^3-9x^2+27x-27-x^3-27+9x^2-1\)
\(=27x-55\)
Gọi T = (x – 1)(x – 2)(x + 4)(x + 5) – 27
= [(x – 1)(x + 4)].[(x – 2)(x + 5)] – 27
= ( x 2 + 3x – 4).( x 2 + 3x – 10) – 27
Đặt x 2 + 3x – 7 = t
Từ đó ta có T = (t – 3)(t + 3) – 27 = t 2 – 9 – 27 = t 2 – 36 = (t – 6)(t + 6)
Thay t = x 2 + 3x – 7 ta được
T = ( x 2 + 3x – 7 – 6)( x 2 + 3x – 7 + 6)
= ( x 2 + 3x – 13)( x 2 + 3x – 1) suy ra a = -13; b = -1 => a + b = -14
Đáp án cần chọn là: D
6: \(-x^2y\left(xy^2-\dfrac{1}{2}xy+\dfrac{3}{4}x^2y^2\right)\)
\(=-x^3y^3+\dfrac{1}{2}x^3y^2-\dfrac{3}{4}x^4y^3\)
7: \(\dfrac{2}{3}x^2y\cdot\left(3xy-x^2+y\right)\)
\(=2x^3y^2-\dfrac{2}{3}x^4y+\dfrac{2}{3}x^2y^2\)
8: \(-\dfrac{1}{2}xy\left(4x^3-5xy+2x\right)\)
\(=-2x^4y+\dfrac{5}{2}x^2y^2-x^2y\)
9: \(2x^2\left(x^2+3x+\dfrac{1}{2}\right)=2x^4+6x^3+x^2\)
10: \(-\dfrac{3}{2}x^4y^2\left(6x^4-\dfrac{10}{9}x^2y^3-y^5\right)\)
\(=-9x^8y^2+\dfrac{5}{3}x^6y^5+\dfrac{3}{2}x^4y^7\)
11: \(\dfrac{2}{3}x^3\left(x+x^2-\dfrac{3}{4}x^5\right)=\dfrac{2}{3}x^3+\dfrac{2}{3}x^5-\dfrac{1}{2}x^8\)
12: \(2xy^2\left(xy+3x^2y-\dfrac{2}{3}xy^3\right)=2x^2y^3+6x^3y^3-\dfrac{4}{3}x^2y^5\)
13: \(3x\left(2x^3-\dfrac{1}{3}x^2-4x\right)=6x^4-x^3-12x^2\)
\(=\left(x^2-3x-1\right)^2-12\left(x^2-3x-1\right)+36-9\\ =\left(x^2-3x-1-6\right)^2-9\\ =\left(x^2-3x-7-3\right)\left(x^2-3x-7+3\right)\\ =\left(x-5\right)\left(x+2\right)\left(x-4\right)\left(x+1\right)\)
\(\left(x^2-3x-1\right)^2-12\left(x^2-3x-1\right)+27\)
\(=\left(x^2-3x-4\right)\left(x^2-3x-10\right)\)
\(=\left(x-4\right)\left(x+1\right)\left(x-5\right)\left(x+2\right)\)