K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 12 2018

Hàm trùng phương \(y=ax^4+bx^2+c\) có hệ số \(a>0\) đạt cực tiểu tại \(x=0\) khi và chỉ khi \(a.b\ge0\)

\(\Rightarrow1.\left(-2\left(m+1\right)\right)\ge0\Rightarrow m+1\le0\Rightarrow m\le-1\)

7 tháng 12 2018

bạn ơi, cô giáo mình giải bài này ra m=-1

Tìm tất cả các giá trị nguyên của m để hàm số y=x^8+(m-2)x^5-(m^2-4)x^4+1 đạt cực tiểu tại x=0.

m= 2 

nha bạn 

bạn muốn tl rõ hơn thì bạn tìm trên google

10 tháng 8 2021

m=t747hGÁY

17 tháng 6 2019

Chọn B

Hàm số đạt cực tiểu tại x = -2 khi

⇔ m = 3

NV
18 tháng 6 2021

\(y'=4x^3+12mx^2+6\left(m+1\right)x=2x\left[2x^2+6mx+3\left(m+1\right)\right]\)

Hàm có cực tiểu mà ko có cực đại khi và chỉ khi \(y'=0\) có đúng 1 nghiệm đơn

TH1: \(2x^2+6mx+3\left(m+1\right)=0\) có nghiệm \(x=0\)

\(\Leftrightarrow m=-1\)

TH2: \(2x^2+6mx+3\left(m+1\right)=0\) có ít hơn 2 nghiệm

\(\Leftrightarrow\Delta'=9m^2-6\left(m+1\right)\le0\)

\(\Leftrightarrow\dfrac{1-\sqrt{7}}{3}\le m\le\dfrac{1+\sqrt{7}}{3}\)