Cho ba số thực a , b , c đôi một phân biệt . CMR :
\(\dfrac{a^2}{\left(b-c\right)^2}+\dfrac{b^2}{\left(c-a\right)^2}+\dfrac{c^2}{\left(a-b\right)^2}\ge2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BĐT đã cho tương đương với:
\(\left(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}\right)^2-2\left[\dfrac{ab}{\left(b-c\right)\left(c-a\right)}+\dfrac{bc}{\left(c-a\right)\left(a-b\right)}+\dfrac{ca}{\left(a-b\right)\left(b-c\right)}\right]\ge2\left(\cdot\right)\).
Mặt khác ta có: \(\dfrac{ab}{\left(b-c\right)\left(c-a\right)}+\dfrac{bc}{\left(c-a\right)\left(a-b\right)}+\dfrac{ca}{\left(a-b\right)\left(b-c\right)}=\dfrac{ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\dfrac{-\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=-1\).
Do đó \(\left(\cdot\right)\Leftrightarrow\left(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}\right)^2\ge0\) (luôn đúng).
BĐT đã cho dc c/m.
T đề nghị ban EDOGAWA CONAN không dùng nick k\này hỏi rồi lấy nick chính trả lời và tự tick nữa. T biết hai cậu là 1 mà không muốn nói thôi.
P/s:Nếu thế nữa t sẽ báo phynit.
Đặt : \(x=\dfrac{a+b}{a-b}\) ; \(y=\dfrac{b+c}{b-c}\) ; \(z=\dfrac{c+a}{c-a}\)
Ta có : \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)
\(\Leftrightarrow xy+yz+zx=-1\)
Mà \(\left(x+y+z\right)^2\ge0\)
\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)\ge0\)
\(\Leftrightarrow x^2+y^2+z^2\ge2\)
\(\Rightarrow\dfrac{\left(a+b\right)^2}{\left(a-b\right)^2}+\dfrac{\left(b+c\right)^2}{\left(b-c\right)^2}+\dfrac{\left(c+a\right)^2}{\left(c-a\right)^2}\ge2\left(đpcm\right)\)
`VT = (b-c)/((a-b)(a-c)) + (c-a)/((b-c)(b-a)) +(a-b)/((c-a)(c-b)) = 2/(a-b) + 2/(b-c) + 2/(c-a)`
`=-((a-b-a+c)/((a-b)(a-c))+(b-c-b+a)/((b-c)(b-a))+(c-a-c+b)/((c-a)(c-b)))`
`=-((a-b)/((a-b)(a-c))-(a-c)/((a-b)(a-c))+(b-c)/((b-c)(b-a))-(b-a)/((b-c)(b-a))+(c-a)/((c-a)(c-b))-(c-b)/((c-a)(c-b)))`
`= 1/(c-a)+1/(a-b)+1/(a-b)+1/(b-c)+1/(b-c)+1/(c-a)`
`=2/(a-b)+2/(b-c)+2/(c-a)=VP(đpcm)`
Trước hết ta có:
\(\dfrac{ab}{\left(b-c\right)\left(c-a\right)}+\dfrac{ac}{\left(b-c\right)\left(a-b\right)}+\dfrac{bc}{\left(c-a\right)\left(a-b\right)}\)
\(=\dfrac{ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\dfrac{ab\left(a-b\right)+b^2c-a^2c+ac^2-bc^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\dfrac{ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\dfrac{\left(a-b\right)\left(ab-ac-bc+c^2\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\dfrac{\left(a-b\right)\left[a\left(b-c\right)-c\left(b-c\right)\right]}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=-1\)
Do đó:
\(\left(\dfrac{a}{b-c}\right)^2+\left(\dfrac{b}{c-a}\right)^2+\left(\dfrac{c}{a-b}\right)^2-2+2\)
\(=\left(\dfrac{a}{b-c}\right)^2+\left(\dfrac{b}{c-a}\right)^2+\left(\dfrac{c}{a-b}\right)^2+2\left(\dfrac{ab}{\left(b-c\right)\left(c-a\right)}+\dfrac{ac}{\left(a-b\right)\left(b-c\right)}+\dfrac{bc}{\left(c-a\right)\left(a-b\right)}\right)+2\)
\(=\left(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}\right)^2+2\ge2\) (đpcm)
\(\Leftrightarrow\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}\ge3+\dfrac{2a^2+2b^2+2c^2-2\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\)
\(\Leftrightarrow\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}\ge5-\dfrac{6\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\)
\(\Leftrightarrow\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}+\dfrac{6\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\ge5\)
Do \(\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}=\dfrac{2a^2}{ab+ac}+\dfrac{2b^2}{bc+ab}+\dfrac{2c^2}{ac+bc}\ge\dfrac{\left(a+b+c\right)^2}{ab+bc+ca}\)
Nên ta chỉ cần chứng minh:
\(\dfrac{\left(a+b+c\right)^2}{ab+bc+ca}+\dfrac{6\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\ge5\)
Điều này hiển nhiên đúng do:
\(VT=\dfrac{2}{3}.\dfrac{\left(a+b+c\right)^2}{ab+bc+ca}+\dfrac{6\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}+\dfrac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\)
\(VT\ge2\sqrt{\dfrac{12\left(a+b+c\right)^2\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)\left(a+b+c\right)^2}}+\dfrac{3\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=5\)
Dấu "=" xảy ra khi \(a=b=c\)
\(\left(a+b+c\right)\left(\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\right)\ge\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\ge\dfrac{9}{4}\)
\(\Rightarrow\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\ge\dfrac{9}{4\left(a+b+c\right)}\)
Dấu "=" xảy ra khi \(a=b=c\)
Bài này có bạn giải rồi:
Cho các số thực dương a,b,c.Chứng minh rằng :\(\dfrac{b\left(2a-b\right)}{a\left(b+c\right)}+\dfrac{c\left(2b-c\right)}{... - Hoc24
\(\left(a;b;c\right)\rightarrow\left(x;y;z\right)\)
Câu hỏi của Không tên - Toán lớp 10 | Học trực tuyến