K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2017

Mấy bài này đăng nhiều rồi bạn ;v

Bài 1: Nhân cả 2 vế cho a+b+c rồi rút gọn được đpcm

Bài 2: Thêm 1 rồi bớt 1 :v (x+y+xy+1-1)

AH
Akai Haruma
Giáo viên
10 tháng 3 2018

Lời giải:

Áp dụng BĐT AM-GM (Cô-si) ta có:

\(\frac{a^4}{b^2(c+a)}+\frac{c+a}{4}+\frac{b}{2}+\frac{b}{2}\geq 4\sqrt[4]{\frac{a^4}{b^2(c+a)}.\frac{c+a}{4}.\frac{b}{2}.\frac{b}{2}}=2a\)

Tương tự:

\(\frac{b^4}{c^2(a+b)}+\frac{a+b}{4}+\frac{c}{2}+\frac{c}{2}\geq 2b\)

\(\frac{c^4}{a^2(b+c)}+\frac{b+c}{4}+\frac{a}{2}+\frac{a}{2}\geq 2c\)

Cộng các BĐT đã thu được theo vế và rút gọn:

\(\frac{a^4}{b^2(a+c)}+\frac{b^4}{c^2(a+b)}+\frac{c^4}{a^2(b+c)}+\frac{3}{2}(a+b+c)\geq 2(a+b+c)\)

hay \(\frac{a^4}{b^2(a+c)}+\frac{b^4}{c^2(a+b)}+\frac{c^4}{a^2(b+c)}\geq \frac{a+b+c}{2}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c\)

10 tháng 4 2017

5. phân tích ra : \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)

áp dụng bđ cosy

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

=> đpcm

6. \(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

hay với mọi x thuộc R đều là nghiệm của bpt

7.áp dụng bđt cosy

\(a^4+b^4+c^4+d^4\ge2\sqrt{a^2.b^2.c^2.d^2}=4abcd\left(đpcm\right)\)

10 tháng 4 2017

1. (a-b)2>=0

=> a2+b2-2ab>=0

2. (a-b)2>=0

=> a2+b2>=2ab

=> \(\dfrac{a^2 +b^2}{2}\ge ab\)

3.Ta phích ra thôi,ta được : a2+2a < a2+2a+1

=> cauis trên đúng

17 tháng 7 2017

Từ \(\dfrac{a-\left(c-b\right)}{b-c}+\dfrac{b-\left(a-c\right)}{c-a}+\dfrac{c-\left(b-a\right)}{a-b}=3\)

\(=>\dfrac{a}{b-c}+1+\dfrac{b}{c-a}+1+\dfrac{c}{a-b}+1=3\)

\(=>\dfrac{a}{b-c}-\dfrac{b}{a-c}-\dfrac{c}{b-a}=0\)

\(=>\dfrac{a}{b-c}=\dfrac{b}{a-c}+\dfrac{c}{b-a}=\dfrac{b^2-ab+ac-c^2}{\left(c-a\right)\left(a-b\right)}\)

Nhân cả 2 vế với \(\dfrac{1}{b-c}\) ta được

\(\dfrac{a}{\left(b-c\right)^2}=\dfrac{b^2-ab+ac-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(1\right)\)

Tương tự ta có:

\(\dfrac{b}{\left(c-a\right)^2}=\dfrac{c^2-bc+bc-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(2\right)\)

\(\dfrac{c}{\left(a-b\right)^2}=\dfrac{a^2-ca+cb-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(3\right)\)

Cộng theo vế (1);(2);(3) ta có ĐPCM

CHÚC BẠN HỌC TỐT.........

28 tháng 11 2017

các bạn ơi giúp mình với mình đang cần gấp lắm hu hu

28 tháng 11 2017

sách gì vậy bạn êy

Y
6 tháng 2 2019

Đặt x = a - b, y = b - c, z = c - a

\(\Rightarrow\left\{{}\begin{matrix}x+y+z=0\\ay+bz+cx=ab-ac+bc-ab+ac-bc=0\end{matrix}\right.\)

+ \(ay+bz+cx=0\)

\(\Rightarrow\dfrac{1}{y}\left(\dfrac{a}{y}+\dfrac{b}{z}+\dfrac{c}{x}\right)=0\)

\(\Rightarrow\dfrac{a}{y^2}+\dfrac{bx}{xyz}+\dfrac{cz}{xyz}=0\)

\(\Rightarrow\dfrac{a}{y^2}=\dfrac{-bx-cz}{xyz}\)

+ Tương tự : \(\dfrac{b}{z^2}=\dfrac{-cy-ax}{xyz}\)

\(\dfrac{c}{x^2}=\dfrac{-az-by}{xyz}\)

Do đó : \(\dfrac{a}{y^2}+\dfrac{b}{z^2}+\dfrac{c}{x^2}=\dfrac{-a\left(x+z\right)-b\left(x+y\right)-c\left(y+z\right)}{xyz}\)

\(=\dfrac{ay+bz+cx}{xyz}\) ( do x + y + z = 0)

\(=0\) ( do ay + bz + cx = 0 )

18 tháng 12 2017

\(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}=0\)

\(\Rightarrow\dfrac{a}{b-c}=\dfrac{b}{a-c}+\dfrac{c}{b-a}=\dfrac{b^2-ab+ac-c^2}{\left(a-b\right)\left(c-a\right)}\)

\(\Leftrightarrow\dfrac{a^2}{\left(b-c\right)^2}=\dfrac{ab^2-a^2b+a^2c-ac^2}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}\)

Tương tự ta có:

\(\dfrac{b^2}{\left(c-a\right)^2}=\dfrac{bc^2-b^2c+b^2a-a^2b}{\left(b-c\right)\left(c-a\right)\left(a-b\right)}\)

\(\dfrac{c^2}{\left(a-b\right)^2}=\dfrac{a^2c-c^2a+c^2b-cb^2}{\left(c-a\right)\left(a-b\right)\left(b-c\right)}\)

Cộng 3 đẳng thức trên có:

==" xl mk ko bt tài làm để có bình phương đc :)) mk chỉ can chứng minh

\(\dfrac{a}{\left(b-c\right)^2}+\dfrac{b}{\left(c-a\right)^2}+\dfrac{c}{\left(a-b\right)^2}=0đcthui\)