Cho x, y, z là các số thưc thỏa mãn: \(2x^2+2y^2+z^2-2x+2y+2xy+2yz+2zx+2=0\)
Tìm giá trị biểu thức A= \(x^{2018}+y^{2018}+z^{2018}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2+2y^2+z^2-2x+2y+2xy+2yz+2zx+2=0\)
\(\Leftrightarrow\)\(\left(x^2+2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\)\(\left(x+y\right)^2+\left(y+z\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow\)\(x=-y=z=1\)
\(\Rightarrow\)\(A=x^{2018}+y^{2018}+z^{2018}=1^{2018}+\left(-1\right)^{2018}+1^{2018}=3\)
...
giúp ko biết đc j ko nhỉ ^^
ta có \(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz.\)lúc đó
\(P=\frac{2018\left(x-y\right)\left(y-z\right)\left(z-x\right)}{2xy^2+2yz^2+2zx^2+3xyz}=2018.\frac{xy^2+yz^2+zx^2-x^2y-y^2z-z^2x}{xy^2+yz^2+zx^2+y^2\left(x+y\right)+x^2\left(x+z\right)+z^2\left(z+y\right)}\)
\(P=2018.\frac{xy^2+yz^2+zx^2-x^2y-y^2z-z^2x}{xy^2+yz^2+zx^2-x^2y-y^2z-z^2x}=2018\)
2x2 + 2y2 + 3xy - x + y + 1 = 0
2x2 + 2y2 + 4xy - xy - x + y + 1 = 0
(2x2 + 2y2 + 4xy) + (-xy - x) + (y + 1) = 0
2(x + y)2 - x(y + 1) + (y + 1) = 0
2(x + y)2 + (y + 1)(1 - x) = 0
Do (x + y)2 \(\ge0\)
\(\Rightarrow\) 2(x + y)2 \(\ge0\)
\(\Rightarrow\) 2(x + y)2 + (y + 1)(1 - x) = 0 \(\Leftrightarrow\) (y + 1)(1 - x) = 0
\(\Rightarrow y+1=0;1-x=0\)
*) y + 1 = 0
y = -1
*) 1 - x = 0
x = 1
Với x = 1; y = -1, ta có:
B = [1 + (-1)]2018 + (1 - 2)2018 + (-1 - 1)2018
= 1 + 22018
3x^2+3y^2+4xy-2x+2y+2=0
=>2x^2+4xy+2y^2+x^2-2x+1+y^2+2y+1=0
=>x=1 và y=-1
M=(1-1)^2017+(1-2)^2018+(-1+1)^2015=1
\(x^2+y^2+z^2+2xy+2yz+2xz+x^2-2x+1+y^2+2y+1=0\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=0\\x-1=0\\y+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}z=-\left(x+y\right)\\x=1\\y=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-1\\z=0\end{matrix}\right.\)
\(\Rightarrow A=1^{2018}+\left(-1\right)^{2018}+0^{2018}=1+1+0=2\)