K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2018

\(E=\left|x+11\right|+\left|x+17\right|+\left|2018+x\right|\)

\(\left|x+11\right|+\left|2018+x\right|=\left|-x-11\right|+\left|2018+x\right|\ge\left|-x-11+2018+x\right|=2007\)

dấu = xảy ra khi \(\left(-x-11\right).\left(2018+x\right)\ge0\Rightarrow-2018\le x\le-11\)(1)

\(\left|x+17\right|\ge0\)

dấu = xảy ra khi \(x+17=0\Rightarrow x=-17\)(2)

\(\Rightarrow E\ge2007\)

dấu = xảy ra khi dấu = ở (1) và (2) đồng thời xảy ra

=> x=-17

Vậy Min E=2007 khi x=-17

1 tháng 12 2018

\(A=\frac{-2018}{x^2-10x+2012}\)

ta có:\(x^2-10x+2012=x^2-2.x.5+5^2+1987=\left(x-5\right)^2+1987\ge1987\)vì (x-5)2\(\ge\)0)

dấu = xảy ra khi x-5=0

=> x=5

vì tử thức âm  mà mẫu thức luôn lớn hơn 0

=> E đạt giá trị nhỏ nhất khi mẫu thức nhỏ nhất

khi đó Min A=\(-\frac{2018}{1987}\)đạt tại x=5

\(A=|x-2018|-|x-2019|\ge|x-2018-x-2019|=|-1|=1\)

11 tháng 8 2021

C = {x} _576+6967=986=79

11 tháng 8 2021

Có:\(\left|x\right|\ge0\)

\(\Rightarrow\left|x\right|+2017\ge2017\)

\(\Leftrightarrow\frac{\left|x\right|+2017}{2018}\ge\frac{0+2017}{2018}=\frac{2017}{2018}\)

Vậy GTNN của C =2017/2018 khi và chỉ khi x=0

11 tháng 8 2021

2017/2018 nha bạn

11 tháng 8 2021

\(C=|x|+\frac{2017}{2018}\)

vì \(|x|\ge0\forall x\)

\(\Rightarrow|x|+\frac{2017}{2018}\ge\frac{2017}{2018}\forall x\)\(\Rightarrow C\ge\frac{2017}{2018}\)

Dấu "=" xảy ra khi x=0

vậy \(Cmin=\frac{2017}{2018}\Leftrightarrow x=0\)

\(B\ge-17\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=-2\\y=-x-5=2-5=-3\end{matrix}\right.\)

3 tháng 3 2022

\(A=\dfrac{2021-x}{11-x}=\dfrac{11-x+2010}{11-x}=\dfrac{11-x}{11-x}+\dfrac{2010}{11-x}=1+\dfrac{2010}{11-x}\)

Để A đạt GTNN thì \(\dfrac{2010}{11-x}\) nhỏ nhất

\(\Rightarrow11-x=2010\Leftrightarrow x=-1999\)

Khi đó \(A=2\)

Để A đạt GTLN thì \(\dfrac{2010}{11-x}\) lớn nhất

\(\Rightarrow11-x=1\Leftrightarrow x=10\)

Khi đó \(A=2011\)

Vậy \(Min_A=2\) khi \(x=-1999\) và \(Max_A=2011\) khi \(x=10\)

31 tháng 8 2018

\(C=x^2-2x+2018=\left(x^2-2x+1\right)+2017=\left(x-1\right)^2+2017\ge2017.\)

Dấu "='' xảy ra khi x=1 

31 tháng 8 2018

\(C=x^2-2x+2018=x^2-2x+1+2017=\left(x-1\right)^2+2017\)

Vì: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2+2017\ge2017\forall x\)

Vậy Min C = 2017

Dấu = xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)

=.= hok tốt!!

28 tháng 1 2020

a) Ta có : \(A=-6x+x^2+11\)

\(\Rightarrow A=\left(x^2-6x+9\right)+2\)

\(\Rightarrow A=\left(x-3\right)^2+2\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy \(minA=2\Leftrightarrow x=3\)

b) \(B=-1+2x^x+10x\)

\(\Rightarrow\)Tớ đang thắc mắc cái chỗ 2xx :)))