\(C=x^2-2x+2018\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2018

\(C=x^2-2x+2018=\left(x^2-2x+1\right)+2017=\left(x-1\right)^2+2017\ge2017.\)

Dấu "='' xảy ra khi x=1 

31 tháng 8 2018

\(C=x^2-2x+2018=x^2-2x+1+2017=\left(x-1\right)^2+2017\)

Vì: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2+2017\ge2017\forall x\)

Vậy Min C = 2017

Dấu = xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)

=.= hok tốt!!

2 tháng 12 2018

1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)

vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)

dấu = xảy ra khi x-2018=0

=> x=2018

Vậy Min A=\(\frac{2017}{2017}\)khi x=2018

2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)

\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)

để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất

mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)

dấu = xảy ra khi \(x+\frac{3}{2}=0\)

=> x=\(-\frac{3}{2}\)

Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)

3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)

để M lớn nhất => x2+4 nhỏ nhất

mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)

dấu = xảy ra khi x=0

=> x=0

Vậy Max M\(=\frac{7}{2}\)khi x=0

ps: bài này khá dài, sai sót bỏ qua =))

2 tháng 12 2018

ê viết lộn dòng này :v

\(MinA=\frac{2017}{2018}\)nha 

2 tháng 1 2018

\(A=-\dfrac{4}{x^2-4x+10}\\ =-\dfrac{4}{\left(x^2-2.x.2+4+6\right)}\\ =-\dfrac{4}{\left(x-2\right)^2+6}\)

\(\left(x-2\right)^2\ge0\\ \Rightarrow\left(x-2\right)^2+6\ge6\\ \Rightarrow\dfrac{4}{\left(x-2\right)^2+6}\le\dfrac{2}{3}\\ \Rightarrow A=-\dfrac{4}{\left(x-2\right)^2+6}\ge-\dfrac{2}{3}\)

Min A=-2/3 khi x=2

3 tháng 1 2018

\(C=\dfrac{2}{x^2+4x+5}=\dfrac{2}{\left(x+2\right)^2+1}\)

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1\)

\(\Rightarrow C\le2\)

Dấu ''='' xảy ra \(\Leftrightarrow x=-2\)

Vậy Min C = 2 kjhi x = -2

20 tháng 8 2018

Ta có :

\(K=x^4-2x^2\)

\(=x^4-2x^2+1-1\)

\(=\left(x^2-1\right)^2-1\)

Vì \(\left(x^2-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x^2-1\right)^2-1\ge-1\forall x\)

Dấu " = " xảy ra khi và chỉ khi

\(\left(x^2-1\right)^2=0\)

\(\Leftrightarrow x^2-1=0\)

\(x=\pm1\)

Vậy \(K_{min}=-1\) tại \(x=\pm1\)

20 tháng 8 2018

\(K=x^4-2x^2\)

\(K=\left(x^2\right)^2-2x^2+1-1\)

\(K=\left(x^2-1\right)^2-1\ge-1\)

Vậy Min K = -1 <=> x = 1 hoặc -1

4 tháng 11 2018

a, \(A=2x^2-8x-10=2\left(x^2-4x+4\right)-18=2\left(x-2\right)^2-18\ge-18\)

Dấu "=" xảy ra <=> x-2=0 <=> x=2

Vậy MinA = -18 khi x=2

b, \(B=x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Dấu "=" xảy ra <=> x-1/2=0 <=> x=1/2

Vậy MaxB = 1/4 khi x=1/2

5 tháng 11 2018

a) \(A=2x^2-8x-10\)
\(=2\left(x^2-4x-5\right)\)

\(=2\left(x^2-2.x.2+2^2-2^2-5\right)\)
\(=2\left[\left(x-2\right)^2-9\right]\)
\(=2\left(x-2\right)^2-18\)

Vì \(2\left(x-2\right)^2\ge0\forall x\)

Nên \(2\left(x-2\right)^2\ge-18\)

Hay \(A\ge-18\)

Vậy gtnn của A là -18 khi \(2\left(x-2\right)^2=0\)

\(x-2=0\)

\(x=2\)

b) \(B=x-x^2\)

\(=-x^2-x\)

\(=-\left(x^2-x\right)\)

\(=-\text{[}x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\text{]}\)

\(=-\text{[}\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\text{]}\)

\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)

Vì \(-\left(x-\frac{1}{2}\right)^2\le0\forall x\)
Nên \(-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x \)
Vậy gtln của B là \(\frac{1}{4}\)khi \(x-\frac{1}{2}=0\)

\(x=\frac{1}{2}\)

1 tháng 9 2019

\(F=-x^4+x^2-4y^2+2x-4y+2000.\)

\(=-x^4+2x^2-1-x^2+2x-1-4y^2-4y-1+2003\)

\(=-\left(x^2-1\right)^2-\left(x-1\right)^2-\left(2y+1\right)^2+2003\)

\(=-\left(x-1\right)^2\left(x+1\right)^2-\left(x-1\right)^2-\left(2y+1\right)^2+2003\)

\(\Rightarrow F_{min}=2003\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(2y+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-\frac{1}{2}\end{cases}}}\)

Vậy \(F_{min}=2003\Leftrightarrow x=1;y=-\frac{1}{2}\)

12 tháng 9 2019

a. 

\(A=\frac{x^2+x^2-2x+1}{x^2}=1+\frac{\left(x-1\right)^2}{x^2}\ge1\)

Giá trị nhỏ nhất của A là 1 khi và chỉ khi x-1=0 <=> x=1

b. \(B=\frac{2014x^2+4x^2-4x+1}{x^2}=2014+\frac{\left(2x-1\right)^2}{x^2}\ge2014\)

Giá trị nhỏ nhất của B là 2014 khi và chỉ khi 2x-1=0 <=> x=1/2

11 tháng 7 2020

Bài làm:

+ \(C=10\left(x^2-2\right)+5=10x^2-20+5=10x^2-15\ge-15\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(10x^2=0\Rightarrow x=0\)

Vậy \(Min\left(C\right)=-15\Leftrightarrow x=0\)

+ \(D=\left(7-x\right)\left(2x+1\right)=-2x^2+13x+7=-2\left(x^2-\frac{13}{2}x+\frac{169}{16}\right)-\frac{225}{8}\)

\(=-2\left(x-\frac{13}{4}\right)^2-\frac{225}{8}\le-\frac{225}{8}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(-2\left(x-\frac{13}{4}\right)^2=0\Rightarrow x=\frac{13}{4}\)

Vậy \(Max\left(D\right)=-\frac{225}{8}\Leftrightarrow x=\frac{13}{4}\)

+ \(H=x^2+y^2+2x-4y+10=\left(x^2+2x+1\right)+\left(y^2-4y+4\right)+5\)

\(=\left(x+1\right)^2+\left(y-2\right)^2+5\ge5\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

Vậy \(Min\left(H\right)=5\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

+ \(E=-x^2-4x+6y-y^2-2021=-\left(x^2+4x+4\right)-\left(y^2-6y+9\right)-2008\)

\(=-\left(x+2\right)^2-\left(y-3\right)^2-2008\le-2008\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}-\left(x+2\right)^2=0\\-\left(y-3\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-2\\y=3\end{cases}}\)

Vậy \(Max\left(E\right)=-2008\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}\)

Học tốt!!!!

28 tháng 10 2019

Ta có: A = x2 + 2y2 + 9z2 - 2x + 12y + 6z + 24

A = (x2 - 2x + 1) + 2(y2 + 6y + 9) + (9z2 + 6z + 1) + 4

A = (x - 1)2 + 2(y + 3)2 + (3z + 1)2  + 4 \(\ge\)\(\forall\)x;y;z

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+3=0\\3z+1=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-3\\z=-\frac{1}{3}\end{cases}}\)

Vậy MinA = 4 <=> x=  1 ; y = -3 và z = -1/3

28 tháng 10 2019

\(x^2+2y^2+9z^2-2x+12y+6z+24\)

\(=\left(x^2-2x+1\right)+\left(9z^2+6z+1\right)+\left(2y^2+12y+22\right)\)

\(=\left(x-1\right)^2+\left(3z+1\right)^2+2\left(y^2+6y+11\right)\)

\(=\left(x-1\right)^2+\left(3z+1\right)^2+2\left(y^2+6y+9+2\right)\)

\(=\left(x-1\right)^2+\left(3z+1\right)^2+2\left(y+3\right)^2+4\ge4\)

Dấu '' = '' xảy ra khi \(\Leftrightarrow\hept{\begin{cases}x-1=0\\3z+1=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\z=-\frac{1}{3}\\y=-3\end{cases}}}\)

Vậy................................

\(A=x^2+2x+3\)

=\(\left(x+1\right)^2+2\)

Với mọi x thì \(\left(x+1\right)^2>=0\)

=>\(\left(x+1\right)^2+2\)>=2

Để A=2 thì

\(\left(x+1\right)^2=0\)

=>\(x+1=0\)

=>\(x=-1\)

Vậy...

Các câu sau tương tự

9 tháng 9 2017

bạn giúp mik câu B vs C luôn nha

Mik tick cho

Xin bạn đó