K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(B\ge-17\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=-2\\y=-x-5=2-5=-3\end{matrix}\right.\)

1 tháng 12 2018

\(A=\frac{-2018}{x^2-10x+2012}\)

ta có:\(x^2-10x+2012=x^2-2.x.5+5^2+1987=\left(x-5\right)^2+1987\ge1987\)vì (x-5)2\(\ge\)0)

dấu = xảy ra khi x-5=0

=> x=5

vì tử thức âm  mà mẫu thức luôn lớn hơn 0

=> E đạt giá trị nhỏ nhất khi mẫu thức nhỏ nhất

khi đó Min A=\(-\frac{2018}{1987}\)đạt tại x=5

1 tháng 12 2018

\(E=\left|x+11\right|+\left|x+17\right|+\left|2018+x\right|\)

\(\left|x+11\right|+\left|2018+x\right|=\left|-x-11\right|+\left|2018+x\right|\ge\left|-x-11+2018+x\right|=2007\)

dấu = xảy ra khi \(\left(-x-11\right).\left(2018+x\right)\ge0\Rightarrow-2018\le x\le-11\)(1)

\(\left|x+17\right|\ge0\)

dấu = xảy ra khi \(x+17=0\Rightarrow x=-17\)(2)

\(\Rightarrow E\ge2007\)

dấu = xảy ra khi dấu = ở (1) và (2) đồng thời xảy ra

=> x=-17

Vậy Min E=2007 khi x=-17

27 tháng 6 2015

a) vì là gtrị tuyệt đối => >=0 

=> GTNN=0 khi x=-1/2

b) GTNN =1/9 <=> x=3/5

3 tháng 1 2016

GTNN cua A la 3/11

GTLN cua B la 5/17

3 tháng 1 2016

a. Ta có : Căn bậc hai của x+2 luôn >_0 vs mọi x

→ A>_ 0+3/11 =3/11

Dấu "= " xảy ra <=> x+2= 0 <=> x=-2

31 tháng 12 2016

\(\left(x-2\right)^2\ge0\) đẳng thức khi x=2

\(5.\left(x-2\right)^2\ge0\)đẳng thức khi x=2

\(5.\left(x-2\right)^2+1\ge1\)đẳng thức khi x=2

Vậy GTNN A là 1 khi x=2

31 tháng 12 2016

ta có 5(x-2)\(\ge\)\(\forall\)x

suy ra  5(x-2)2 + 1 \(\ge\)1  \(\forall\)x

Dấu "=" xảy ra khi x-2=0

     \(\Leftrightarrow\)         x=2

Vậy GTNN của C là 1 khi x=2

Ta có  \(\left|x+1\right|\ge0\forall x\Rightarrow\left|x+1\right|+2\ge2\)

Hay \(A\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy GTNN của A=2 <=> x=-1

Ta có  \(\left|x+1\right|\ge0\forall x\Rightarrow3-\left|x+1\right|\le3\)

Hay \(B\le3\)

Dấu "=" xảy ra \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy GTLN của B=3 <=> x=-1

Ta có  \(\hept{\begin{cases}\left|x+1\right|\ge x+1\left(1\right)\\\left|5-x\right|\ge5-x\left(2\right)\end{cases}}\)

Từ (1);(2) => \(\left|x+1\right|+\left|5-x\right|\ge x+1+5-x=6\)

Hay \(C\ge6\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+1\ge0\\5-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\le5\end{cases}\Leftrightarrow}-1\le x\le5}\)

Vậy GTNN của C=6 <=> \(-1\le x\le5\)

Ta có  \(\hept{\begin{cases}\left|x+1\right|\ge x+1\left(1\right)\\\left|x-3\right|\ge3-x\left(2\right)\end{cases}}\)

Từ (1);(2) => \(\left|x+1\right|+\left|3-x\right|\ge x+1+3-x=4\)

Hay \(D\ge4\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+1\ge0\\x-3\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\le3\end{cases}\Leftrightarrow}-1\le x\le3}\)

Vậy GTNN của C=4 <=> \(-1\le x\le3\)

 

Dòng cuối mik nhầm 

GTNN của D =4

29 tháng 9 2016

Giúp mình với mn ơi, tối nay mình học rồi!