Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) vì là gtrị tuyệt đối => >=0
=> GTNN=0 khi x=-1/2
b) GTNN =1/9 <=> x=3/5
\(A=\left(-3x+1\right)^2-\frac{3}{4}\)
Vì:\(\left(-3x+1\right)^3\ge0\forall x\in R\)
\(\Rightarrow\left(-3x+1\right)^2-\frac{3}{4}\ge\frac{-3}{4}\forall x\in R\)
Dấu "="xảy ra<=> \(\left(-3x+1\right)^2=0\Leftrightarrow x=\frac{1}{3}\)
vậy Amin =\(\frac{-3}{4}\) tại x=\(\frac{1}{3}\)
1)
a) \(M=\)\(x^2\)\(+\)\(4x\)\(+\)\(9\)
\(=\)\(x^2\)\(+\)\(2x\)\(.\)\(2\)\(+\)\(4\)\(+\)\(5\)
\(=\left(x+2\right)^2\)\(+\)\(5\)\(>;=\)\(5\)
Dấu bằng xảy ra khi x + 2 = 0
x = -2
Vậy GTNN của M bằng 5 khi x = -2
b) \(N=\)\(x^2\)\(-\)\(20x\)\(+\)\(101\)
\(=\)\(x^2\)\(-\)\(2x\)\(.\)\(10\)\(+\)\(100\)\(+\)\(1\)
\(=\)\(\left(x-10\right)^2\)\(+\)\(1\)\(>;=\)\(1\)
Dấu bằng xảy ra khi x - 10 = 0
x = 10
Vậy GTNN của N bằng 1 khi x = 10
2)
a) \(C=\)\(-y^2\)\(+\)\(6y\)\(-\)\(15\)
\(=\)\(-y^2\)\(+\)\(2y\)\(.\)\(3\)\(-\)\(9\)\(-\)\(6\)
\(=\)\(-\left(y-3\right)^2\)\(-\)\(6\)\(< ;=\)\(6\)
Dấu bằng xảy ra khi y - 3 = 0
y = 3
Vậy GTLN của C bằng -6 khi y = 3
b) \(B=\)\(-x^2\)\(+\)\(9x\)\(-\)\(12\)
\(=\)\(-x^2\)\(+\)\(2x\)\(.\)\(\frac{9}{2}\)\(-\)\(\frac{81}{4}\)\(+\)\(\frac{81}{4}\)\(-\)\(12\)
\(=\)\(-\left(x-\frac{9}{2}\right)^2\)\(+\)\(\frac{33}{4}\)\(< ;=\)\(\frac{33}{4}\)
Dấu bằng xảy ra khi \(x-\frac{9}{2}=0\)
\(x=\frac{9}{2}\)
Vậy GTLN của B bằng \(\frac{33}{4}\)khi x = \(\frac{9}{2}\)
a) M = x2 + 4x + 9 = x2 + 4x + 4 + 5 = (x + 2)2 + 5
Vì : \(\left(x+2\right)^2\ge0\forall x\in R\)
Nên M = (x + 2)2 + 5 \(\ge5\forall x\in R\)
Vậy Mmin = 5 khi x = -2
b) N = x2 - 20x + 101 = x2 - 20x + 100 + 1 = (x - 10)2 + 1
Vì \(\left(x-10\right)^2\ge0\forall x\in R\)
Nên : N = (x - 10)2 + 1 \(\ge1\forall x\in R\)
Vậy Nmin = 1 khi x = 10
Bài 2 :
a) C = -y2 + 6y - 15 = -(y2 - 6y + 15) = -(y2 - 6y + 9 + 6) = -(y2 - 6y + 9) - 6 = -(y - 3)2 - 6
Vì \(-\left(y-3\right)^2\le0\forall x\in R\)
Nên : C = -(y - 3)2 - 6 \(\le-6\forall x\in R\)
Vậy Cmin = -6 khi y = 3
b) B = -x2 + 9x - 12 = -(x2 - 9x + 12) = -(x2 - 9x + \(\frac{81}{4}-\frac{33}{4}\)) = \(-\left(x-\frac{9}{2}\right)^2+\frac{33}{4}\)
Vì \(-\left(x-\frac{9}{2}\right)^2\le0\forall x\in R\)
Nên : B = \(-\left(x-\frac{9}{2}\right)^2+\frac{33}{4}\) \(\le\frac{33}{4}\forall x\in R\)
Vậy Bmin = \(\frac{33}{4}\) khi \(x=\frac{9}{2}\)
Bài 1 :
\(C=\frac{1}{\left|x-2\right|+3}\)
\(C\le\frac{1}{3}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy....
Bài 2 :
a) \(\left(\frac{1}{2}\right)^{3x-1}=\frac{1}{32}\)
\(\left(\frac{1}{2}\right)^{3x-1}=\left(\frac{1}{2}\right)^5\)
\(\Rightarrow3x-1=5\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
b) \(2\cdot3^{x-405}=3^{x-1}\)
\(2=3^{x-1}:3^{x-405}\)
\(2=3^{x-1-x+405}\)
\(2=3^{404}\)( vô lí )
=> x thuộc rỗng
c) \(\frac{1}{81}\cdot27^{2x}=\left(-9\right)^4\)
\(\frac{27^{2x}}{81}=9^4\)
\(\frac{\left(3^3\right)^{2x}}{3^4}=\left(3^2\right)^4\)
\(\frac{3^{6x}}{3^4}=3^8\)
\(3^{6x-4}=3^8\)
\(\Rightarrow6x-4=8\)
\(\Rightarrow6x=12\)
\(\Rightarrow x=2\)
d) \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)
\(\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)
\(\left(4x-1\right)^{20}\cdot\left[\left(4x-1\right)^{10}-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}4x-1=0\\4x-1=\left\{\pm1\right\}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=\left\{\frac{1}{2};0\right\}\end{cases}}\)
GTNN nghĩa là giá trị nhỏ nhất đó bạn. Bạn biết thì giải giúp nhé
Ta có \(\left|x+1\right|\ge0\forall x\Rightarrow\left|x+1\right|+2\ge2\)
Hay \(A\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy GTNN của A=2 <=> x=-1
Ta có \(\left|x+1\right|\ge0\forall x\Rightarrow3-\left|x+1\right|\le3\)
Hay \(B\le3\)
Dấu "=" xảy ra \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy GTLN của B=3 <=> x=-1
Ta có \(\hept{\begin{cases}\left|x+1\right|\ge x+1\left(1\right)\\\left|5-x\right|\ge5-x\left(2\right)\end{cases}}\)
Từ (1);(2) => \(\left|x+1\right|+\left|5-x\right|\ge x+1+5-x=6\)
Hay \(C\ge6\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+1\ge0\\5-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\le5\end{cases}\Leftrightarrow}-1\le x\le5}\)
Vậy GTNN của C=6 <=> \(-1\le x\le5\)
Ta có \(\hept{\begin{cases}\left|x+1\right|\ge x+1\left(1\right)\\\left|x-3\right|\ge3-x\left(2\right)\end{cases}}\)
Từ (1);(2) => \(\left|x+1\right|+\left|3-x\right|\ge x+1+3-x=4\)
Hay \(D\ge4\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+1\ge0\\x-3\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\le3\end{cases}\Leftrightarrow}-1\le x\le3}\)
Vậy GTNN của C=4 <=> \(-1\le x\le3\)
Dòng cuối mik nhầm
GTNN của D =4