AH \(\perp\)xy tại K
BK \(\perp\)xy tai H
AH = BK
C/Minh AK = BH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H K I
a) Xét \(\Delta\)AHB vuông tại H và \(\Delta\)AKC vuông tại K có:
AB = AC (\(\Delta\)ABC cân tại A)
\(\widehat{KAH}\) chung
=> \(\Delta\)AHB = \(\Delta\)AKC (cạnh huyền - góc nhọn)
=> AH = AK (2 cạnh tương ứng)
b) Xét \(\Delta\)AKI vuông tại K và \(\Delta\)AHI vuông tại H có:
AI chung
AK = AH (cmt)
=> \(\Delta\)AKI = \(\Delta\)AHI (cạnh huyền - cạnh góc vuông)
=> IK = IH (2 cạnh tương ứng)
1) Thêm đề là trên cạnh AC lấy điểm E sao cho AE= AB nhé.
Xét 2 \(\Delta\) \(ABD\) và \(AED\) có:
\(AB=AE\left(gt\right)\)
\(\widehat{BAD}=\widehat{EAD}\) (vì \(AD\) là tia phân giác của \(\widehat{BAC}\))
Cạnh AD chung
=> \(\Delta ABD=\Delta AED\left(c-g-c\right)\)
=> \(\widehat{BDA}=\widehat{EDA}\) (2 góc tương ứng).
=> \(DA\) là tia phân giác của \(\widehat{BDE}\left(đpcm\right).\)
Chúc bạn học tốt!
b: Xét ΔABM vuông tại A có AK là đường cao
nên \(BK\cdot BM=AB^2\left(1\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BK\cdot BM=BH\cdot BC\)
hay \(\dfrac{BK}{BH}=\dfrac{BC}{BM}\)
Xét ΔBKC và ΔBHM có
\(\dfrac{BK}{BH}=\dfrac{BC}{BM}\)
\(\widehat{MBH}\) chung
Do đó: ΔBKC\(\sim\)ΔBHM
a) Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC(ΔABC cân tại A)
\(\widehat{A}\) chung
Do đó: ΔABH=ΔACK(cạnh huyền-góc nhọn)
⇒AH=AK(hai cạnh tương ứng)
b) Xét ΔAKI vuông tại K và ΔAHI vuông tại H có
AI là cạnh chung
AK=AH(cmt)
Do đó: ΔAKI=ΔAHI(cạnh huyền-cạnh góc vuông)
⇒\(\widehat{KAI}=\widehat{HAI}\)(hai góc tương ứng)
hay \(\widehat{BAI}=\widehat{CAI}\)
mà tia AI nằm giữa hai tia AB,AC
nên AI là tia phân giác của \(\widehat{BAC}\)(đpcm)
c) Xét ΔKBI vuông tại K và ΔHCI vuông tại H có
KI=HI(ΔAKI=ΔAHI)
\(\widehat{KIB}=\widehat{HIC}\)(hai góc đối đỉnh)
Do đó: ΔKBI=ΔHCI(cạnh góc vuông-góc nhọn kề)
⇒IB=IC(hai cạnh tương ứng)
Xét ΔIBC có IB=IC(cmt)
nên ΔIBC cân tại I(định nghĩa tam giác cân)
d) Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: IB=IC(cmt)
nên I nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AI là đường trung trực của BC
hay AI⊥BC(đpcm)
À.....Phạm Hải Vân, mình sẽ cố gắng.....Nhưng hình như đề sai rồi bạn nhé! Ở chỗ "vẽ CE vuông góc và bằng CE" thay bằng "vẽ CE vuông góc và bằng CA" phải ko bạn?
Phạm Hải Vân, mình đã trả lời ở bên câu hỏi của bạn rồi nha!