Cho \(\Delta\)ABC có AB < AC. Gọi M là trung điểm của cạnh BC, (đoạn thẳng AM được gọi là đường trung tuyến của \(\Delta\)ABC). Lấy điểm I bất kì trên đường trung tuyến AM. Trên tia đối của tia MA lấy E sao cho ME = MI. So sánh \(\Delta\)BMI và \(\Delta\)MEC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta BMI\)và \(\Delta CME\)có:
\(BM=CM\left(gt\right)\)
\(\widehat{BMI}=\widehat{CME}\) (đối đỉnh)
\(MI=ME\left(gt\right)\)
Do đó: \(\Delta BMI=\Delta CME\left(c.g.c\right)\)
Trong 2 tam giác bằng nhau, bạn phải viết đỉnh tương ứng thì mới đúng.
Chúc bạn học tốt.
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
tk
1.gọi giao của BD và CE là O
ta có: OB=2/3 BD=> OB=2/3 x 9=6
ta có: OC=2/3 EC=> OC=2/3 x12=8
ta có:OC2+OB2=62+82=36+64=100OC2+OB2=62+82=36+64=100OC2+OB2=62+82=36+64=100
BC2=102=100BC2=102=100BC2=102=100
=> tam giác OBC vuông tại O=> BD_|_CE tại O
refer
1.gọi giao của BD và CE là O
ta có: OB=2/3 BD=> OB=2/3 x 9=6
ta có: OC=2/3 EC=> OC=2/3 x12=8
ta có:OC2+OB2=62+82=36+64=100OC2+OB2=62+82=36+64=100OC2+OB2=62+82=36+64=100
BC2=102=100BC2=102=100BC2=102=100
=> tam giác OBC vuông tại O=> BD_|_CE tại O
Xét ΔBAN có
BM,ND là trung tuyến
BM cắt ND tại I
=>I là trọng tâm
=>BI=2/3BM=2/3*1/2*BC=1/3BC
Xét ΔCAN có
CM,.NE là trung tuyến
CM cắt NE tại K
=>K là trọng tâm
=>CK=2/3CM=1/3CB
=>BI=IK=CK
Xét ΔBMI và ΔCME có
MI=ME
góc BMI=góc CME
MB=MC
Do đó: ΔBMI=ΔCME