Cho tam giac ABC co AB=AC Tren canh AB lay diem D, tien tia doi cua tia CA lay diem E soa cho DB=CE, BC cat DE tai F. CMR: F la trung diem cua DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
a/ Xét tam giác ABM và tam giác ACM có:
AB = AC (GT)
AM: cạnh chung
BM = MC (GT)
Vậy tam giác ABM = tam giác ACM (c.c.c)
Ta có: tam giác ABM = tam giác ACM
=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)
mà \(\widehat{AMB}\)+\(\widehat{AMC}\)=1800 (kề bù)
=> \(\widehat{AMB}\)=\(\widehat{AMC}\)=900
=> AM \(\perp\)BC (đpcm)
b/ Xét tam giác BDA và tam giác EDC có:
BD = DE (GT)
\(\widehat{BDA}\)=\(\widehat{EDC}\) (đối đỉnh)
AD = DC (GT)
Vậy tam giác BDA = tam giác EDC (c.g.c)
=> \(\widehat{BAC}\)=\(\widehat{DCE}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // CE (đpcm)
c/ Đã vẽ và kí hiệu trên hình
d/ Xét tam giác AMB và tam giác CMF có:
AM = MF (GT)
\(\widehat{AMB}\)=\(\widehat{CMF}\) (đối đỉnh)
BM = MC (GT)
Vậy tam giác AMB = tam giác CMF (c.g.c)
=> \(\widehat{BAM}\)=\(\widehat{MFC}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // CF
Ta có: AB // CE (1)
Ta có: AB // CF (2)
Từ (1),(2) => EC trùng CF hay E,C,F thẳng hàng
Tự vẽ hình
Từ D vẽ DH // CE (H \(\in\) BC )
Vì DH // CE
=> \(\widehat{MDH}=\widehat{MEC}\) (so le trong )
và \(\widehat{DHM}=\widehat{MCE}\) (so le trong )
và \(\widehat{DHB}=\widehat{ACH}\) (đồng vị )
Vì \(\widehat{DHB}=\widehat{ACH}\)
mà \(\widehat{B}=\widehat{ACB}\) ( \(\Delta\) ABC cân tại A )
=> \(\widehat{B}=\widehat{DHB}\)
=> \(\Delta\) DHB cân tại D
=> DB = DH
mà DB = CE
=> DH = CE
Xét \(\Delta\) MDH và \(\Delta\) MCE có :
\(\widehat{MDH}=\widehat{MEC}\) (chứng minh trên )
DH = CE (chứng minh trên )
\(\widehat{DHM}=\widehat{MCE}\) (chứng minh trên )
=> \(\Delta\) MDH = \(\Delta\) MCE (g-c-g )
=> DM = ME (cặp cạnh tương ứng )
=> M là trung điểm của DE
=> đpcm
Trên tia đối của tia BC lấy F sao cho BF = MC
Nối D với F.
Ta có: \(\widehat{ABC}+\widehat{DBF}=180^o\) (kề bù)
\(\widehat{ACB}+\widehat{ECM}=180^o\) (kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\) (\(\Delta ABC\) cân tại A)
\(\Rightarrow\widehat{DBF}=\widehat{ECM}\)
Xét \(\Delta DBF\) và \(\Delta ECM\) có:
DB = EC (gt)
\(\widehat{DBF}=\widehat{ECM}\) (c/m trên)
BF = CM (dựng hình)
\(\Rightarrow\Delta DBF=\Delta ECM\left(c.g.c\right)\)
\(\Rightarrow\widehat{BFD}=\widehat{CME}\)
mà \(\widehat{CME}=\widehat{DMF}\) (đối đỉnh)
\(\Rightarrow\widehat{BFD}=\widehat{DMF}\) hay \(\widehat{DFM}=\widehat{DMF}\)
\(\Rightarrow\Delta DMF\) cân tại D
\(\Rightarrow DF=DM\) (1)
mà \(\Delta DBF=\Delta ECM\)
\(\Rightarrow DF=EM\) (2)
Từ (1) và (2) \(\Rightarrow DM=EM\)
\(\Rightarrow M\) là tđ của DE.
Theo mk nghĩ thì \(\Delta ABC\) cần bổ sung thêm yếu tố "cân tại A" mới làm đc. Thanh Nga Nguyễn
a/ Áp dụng định lí Pytago vào tam giác vuông ABC ta được:
BC^2=AB^2+AC^2=3^2+4^2=5^2
=> BC=5 cm
b)c/m tam giác BAM= tam giác CDM=><ABC=<DCB mà 2 góc này là 2 góc so le trong=>AB//DC
VÌ tam giác BAM= tam giác CDM=> AB=CD
Kẻ \(DI\perp BC,EK\perp BC\left(I,K\in BC\right)\Rightarrow DI//EK\Rightarrow\widehat{IDF}=\widehat{KEF}\) (so le trong)
\(\widehat{B}=\widehat{KCE}\left(=\widehat{ACB}\right)\)
\(\Delta DIB=\Delta EKC\left(ch-gn\right)\Rightarrow DI=EK\) (2 cạnh t/ứ)
\(\Delta IDF=\Delta KEF\left(g.c.g\right)\Rightarrow DF=EF\)
Vậy F là trung điểm của DE.