K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 11 2018

Lời giải:

ĐKXĐ:.........

PT \(\Leftrightarrow (4x^2-12x+11)-5\sqrt{4x^2-12x+11}-11=0\)

Đặt \(\sqrt{4x^2-12x+11}=t\)

\(\Rightarrow t^2-5t-11=0\)

\(\Rightarrow \left[\begin{matrix} t=\frac{5+\sqrt{69}}{2}\\ t=\frac{5-\sqrt{69}}{2}\end{matrix}\right.\). Vì $t$ không âm nên \(t=\frac{5+\sqrt{69}}{2}\)

\(\Rightarrow 4x^2-12x+11=t^2=\frac{47+5\sqrt{69}}{2}\)

\(\Leftrightarrow 4x^2-12x-\frac{25+5\sqrt{69}}{2}=0\)

\(\Rightarrow x=\frac{1}{4}\left(6\pm \sqrt{86+10\sqrt{69}}\right)\) (thỏa mãn)

Vậy...........

P/s: Thực chất chỉ cần có hướng làm là được, nhưng đề ra dở ở cái số quá xấu chỉ tổ làm vất học sinh chứ không giải quyết được gì có ích.

30 tháng 11 2018

Thanks nha

NV
21 tháng 7 2021

a.

ĐKXĐ: \(-1\le x\le1\)

Đặt \(\sqrt{1-x^2}=t\Rightarrow0\le t\le1\)

\(x^2=1-t^2\Rightarrow x^4=t^4-2t^2+1\)

Pt trở thành:

\(729\left(t^4-2t^2+1\right)+8t=36\)

\(\Leftrightarrow729t^4-1458t^2+8t+693=0\)

\(\Leftrightarrow\left(9t^2+2t-9\right)\left(81t^2-18t-77\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}9t^2+2t-9=0\\81t^2-18t-77=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{\sqrt{82}-1}{9}\\t=\dfrac{1+\sqrt{78}}{9}\end{matrix}\right.\)

\(\Rightarrow x=\pm\sqrt{1-t^2}=...\)

NV
21 tháng 7 2021

b.

ĐKXĐ: ...

\(-3\left(10+4x-x^2\right)-5\sqrt{10+4x-x^2}+42=0\)

Đặt \(\sqrt{10+4x-x^2}=t\ge0\)

\(\Rightarrow-3t^2-5t+42=0\)

\(\Rightarrow\left[{}\begin{matrix}t=3\\t=-\dfrac{14}{3}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{10+4x-x^2}=3\)

\(\Leftrightarrow x^2-4x-1=0\)

\(\Leftrightarrow x=...\)

3 tháng 11 2019

b) \(1+4x-3|x+2|+4=0\)

\(\Leftrightarrow4x-3|x+2|=-5\left(1\right)\)

TH1: Với \(|x+2|=x+2\)thay vào (1) ta được:

\(4x-3\left(x+2\right)=-5\)

\(\Leftrightarrow4x-3x-6=-5\)

\(\Leftrightarrow x=1\)(chọn tự thử lại nhé nó =0 )

TH2: Với \(|x+2|=-x-2\)thay vào (1) ta được: 

\(4x-3\left(-x-2\right)=-5\)

\(\Leftrightarrow4x+3x+6=-5\)

\(\Leftrightarrow7x=-11\)

\(\Leftrightarrow x=\frac{-11}{7}\)( loại tự thử lại nhé nó ko =0 )

Vậy x=1

NV
21 tháng 7 2021

c.

ĐLXĐ: \(x\ge-\dfrac{1}{3}\)

\(-\left(3x+1\right)+\sqrt{3x+1}+4x^2-10x+6=0\)

Đặt \(\sqrt{3x+1}=t\ge0\)

\(\Rightarrow-t^2+t+4x^2-10x+6=0\)

\(\Delta=1+4\left(4x^2-10x+6\right)=\left(4x-5\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{-1+4x-5}{-2}=3-2x\\t=\dfrac{-1-4x+5}{-2}=2x-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+1}=3-2x\left(x\le\dfrac{3}{2}\right)\\\sqrt{3x-1}=2x-2\left(x\ge1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=4x^2-12x+9\left(x\le\dfrac{3}{2}\right)\\3x-1=4x^2-8x+4\left(x\ge1\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
21 tháng 7 2021

a.

ĐKXĐ: \(x\ge-\dfrac{5}{4}\)

\(\Leftrightarrow4x^2-12x-2-2\sqrt{4x+5}=0\)

\(\Leftrightarrow\left(4x^2-8x+4\right)-\left(4x+5+2\sqrt{4x+5}+1\right)=0\)

\(\Leftrightarrow\left(2x-2\right)^2-\left(\sqrt{4x+5}+1\right)^2=0\)

\(\Leftrightarrow\left(2x-2-\sqrt{4x+5}-1\right)\left(2x-2+\sqrt{4x+5}+1\right)=0\)

\(\Leftrightarrow\left(2x-3-\sqrt{4x+5}\right)\left(2x-1+\sqrt{4x+5}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{4x+5}=2x-3\left(x\ge\dfrac{3}{2}\right)\\\sqrt{4x+5}=1-2x\left(x\le\dfrac{1}{2}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+5=4x^2-12x+9\left(x\ge\dfrac{3}{2}\right)\\4x+5=4x^2-4x+1\left(x\le\dfrac{1}{2}\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)

30 tháng 8 2021

\(\sqrt{4x^2-12x+9}+3=2x\)

<=>\(\sqrt{4x^2-12x+9}=2x-3\)

<=>\(4x^2-12x+9=\left(2x-3\right)^2\)

<=>\(4x^2-12x+9=4x^2-12x+9\)

<=>\(4x^2-12x+9-4x^2+12x-9=0\)

<=>0=0( luôn đúng )

=> phương trình trên có vô số nghiệm

Vậy phương trình trên có vô số nghiệm

Ta có: \(\sqrt{4x^2-12x+9}+3=2x\)

\(\Leftrightarrow\left|2x-3\right|=2x-3\)

\(\Leftrightarrow2x-3\ge0\)

hay \(x\ge\dfrac{3}{2}\)

Đặt \(\dfrac{x}{\sqrt{4x-1}}=a\)

Theo đề, ta có phương trình:

a+1/a=2

\(\Leftrightarrow a+\dfrac{1}{a}=2\)

\(\Leftrightarrow\dfrac{a^2+1-2a}{a}=0\)

=>a=1

=>\(x=\sqrt{4x-1}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4x-1\\x>=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=3\\x>=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow x\in\left\{2+\sqrt{3};2-\sqrt{3}\right\}\)

28 tháng 11 2021

ĐKXĐ: ...

\(x^2+\sqrt{4x^2-12x+44}=3x+4\)

\(\Leftrightarrow\sqrt{4x^2-12x+44}=3x+4-x^2\)

\(\Leftrightarrow4x^2-12x+44=\left(3x+4-x^2\right)^2\)

\(\Leftrightarrow4x^2-12x+44=x^4-6x^3+x^2+24x+16\)

\(\Leftrightarrow x^4-6x^3-3x^2+36x-28=0\)

...........

28 tháng 11 2021

\(đk:4x^2-12x+44\ge0\left(luôn-đúng\right)\)

\(x^2+\sqrt{4x^2-12x+44}=3x+4\)

\(\Leftrightarrow x^2-3x-4+2\sqrt{x^2-3x+11}=0\)

\(\Leftrightarrow x^2-3x+11+2\sqrt{x^2-3x+11}-15=0\)

\(đặt:\sqrt{x^2-3x+11}=t\left(t\ge0\right)\)

\(\Rightarrow t^2+2t-15=0\Leftrightarrow\left[{}\begin{matrix}t=3\left(tm\right)\\t=-5\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-3x+11}=3\Leftrightarrow x^2-3x+2=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)