Tìm nghiệm nguyên dương của phương trinh \(\left(x+y\right)^4=40y+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x+y >= y+1 (do x>=1)
=> (x+y)^4 >= (y+1)^4
=> 40y +1 = (x+y)^4 >= (y+1)^4 (1*)
Mặt khác nhận thấy (y+1)^4 > 40y +1 nếu y >=3 (2*)
{ Do (y+1)^4 = y^4 + 4y^3 + 6y^2 + 4y +1 >= 27y + 36y + 18y +4y +1 >40y+1
Thay y^4 = y^3.y >= 3^3.y =27y; 4y^3 = 4.y^2.y >= 4.9.y =36y ....}
Từ (1*,2*)
=> y=1, hay y=2
Thay vao ta có nghiệm x=1; y=2 là so duy nhất
x2+(x+y)2=(x+9)2
x2+x2+2xy+y2=x2+18x+81
x2+x2+2xy+y2-x2-18x-81=0
x2+2xy+y2-18x-81=0
het biet roi
Ta có: x^2+(x+y)^2=(x+9)^2
=>x^2+x^2+2xy+y^2=x^2+18x+81
=>2x^2+2xy+y^2=x^2+18x+81
=>2x^2+2xy+y^2-x^2-18x-81=0
=>(x^2+2xy+y^2)-18(x+1)-99=0
=>(x+1)^2-18(x+1)-99=0
=>(x+1)(x+1-18)-99=0
=>(x+1)(x-17)-99=0
=>(x+1)(x-17)=99
=>(x+1)(x-17)=1*99=3*33=......
=>x=tự tính nốt
=>
Ta có: \(x\left(x+2y\right)^3-y\left(y+2x\right)^3=27\)
\(\Leftrightarrow x\left(x^3+6x^2y+12xy^2+8y^3\right)-y\left(y^3+6xy^2+12x^2y+8x^3\right)=27\)
\(\Leftrightarrow x^4+6x^3y+12x^2y^2+8xy^3-y^4-6xy^3-12x^2y^2-8x^3y=27\)
\(\Leftrightarrow\left(x^4-y^4\right)-2x^3y+2xy^3=27\)
\(\Leftrightarrow\left(x^2-y^2\right)\left(x^2+y^2\right)-2xy\left(x^2-y^2\right)=27\)
\(\Leftrightarrow\left(x^2-y^2\right)\left(x^2-2xy+y^2\right)=27\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)^3=27\)
Vì x , y > 0 => \(x+y>0\Rightarrow\left(x-y\right)^3>0\Rightarrow x>y\)
Khi đó: \(\left(x-y\right)^3\in\left\{1;8;27\right\}\Rightarrow x-y\in\left\{1;2;3\right\}\)
Nếu \(\left(x-y\right)^3=1\Rightarrow\hept{\begin{cases}x-y=1\\x+y=27\end{cases}}\Rightarrow\hept{\begin{cases}x=14\\y=13\end{cases}}\)
Nếu \(\left(x-y\right)^3=8\Rightarrow\hept{\begin{cases}x-y=2\\x+y=\frac{27}{8}\end{cases}\left(ktm\right)}\)
Nếu \(\left(x-y\right)^3=27\Rightarrow\hept{\begin{cases}x-y=3\\x+y=1\end{cases}}\left(ktm\right)\)
Vậy x = 14 , y = 13