Cho tam giác ABC có \(\widehat{A}\) = 70 độ. Các tia phân giác của \(\widehat{B}\) và \(\widehat{C}\) cắt nhau tại O.
a, Tính số đo \(\widehat{BOC}\)
b, Chứng minh rằng: \(\widehat{BOC}\) = 90 độ + \(\dfrac{\widehat{A}}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC có :
A + ABC + ACB = 180 *
=> ABC + ACB = 180* - a
Mà BC là phân giác ABC
=> ABD = CBD = \(\frac{1}{2}ABC\)
Mà CE là phân giác ACB
=> ACE = BCE = \(\frac{ACB}{2}\)
=> ECB + DBC = \(\frac{ACB+ABC}{2}\)= \(\frac{180-a}{2}\)
Xét tam giác OBC có :
OBC + OCB + BOC = 180*
=> BOC = 180* - ( OBC + OCB)
=> BOC = 180* - \(\frac{180-a}{2}\)
=> BOC =\(\frac{a}{2}\)(dpcm)
a) Ta có: + \(\widehat{BOC}\)là góc ngoài của tam giác OBK
=> \(\widehat{BOC}=\widehat{OBK}+\widehat{OKB}\) (1)
+ \(\widehat{OKB}\)là góc ngoài của tam giác AKC
=>\(\widehat{OKB}=\widehat{A}+\widehat{ACK}\)(2)
Từ (1)(2) =>\(\widehat{BOC}=\widehat{OBK}+\widehat{A}+\widehat{ACK}\)
hay\(\widehat{BOC}=\widehat{A}+\widehat{ABO}+\widehat{ACO}\)
b) Ta có:\(\widehat{ABO}+\widehat{ACO}=90^o-\frac{\widehat{A}}{2}\)
=>\(2\widehat{ABO}+2\widehat{ACO}=180^o-\widehat{A}\)(3)
Xét tam giác ABC có:
\(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^o\)( Tổng 3 góc trong 1 tam giác)
=>\(\widehat{ABC}+\widehat{ACB}=180^o-\widehat{A}\)(4)
Từ (3)(4) => \(2\widehat{ABO}+2\widehat{ACO}=\widehat{ABC}+\widehat{ACB}\)(*)
Ta có: BO là tia phân giác của góc ACB
=>\(2\widehat{ABO}=\widehat{ABC}\)(**)
Từ (*)(**) => \(2\widehat{ABO}+2\widehat{ACO}=2\widehat{ABO}+\widehat{ACB}\)
=>\(2\widehat{ACO}=\widehat{ACB}\)
=> CO là tia phân giác của góc ACB
nhanh lên mình cần gấp lắm
giúp mình với huhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhu