giúp mình nhé : cho tứ giác ABCD có AB2+CD2=AD2+BC2. Chứng minh AC vuông góc BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cô làm rồi em ơi https://olm.vn/cau-hoi/bai-3-tu-giac-abcd-co-goc-c-goc-d-90-do-chung-minh-rang-ac2-bd-ab2cd2.8140260328277
Kẻ đường kính BB’. Nối B’A, B’D, B’C.
Ta có: = 90° ( góc nội tiếp chắn nửa đường tròn)
⇒ AC // B'D ( cùng vuông góc với BD)
Suy ra, tứ giác ADB’C là hình thang
Vì ADB’C nội tiếp đường tròn (O) nên ADB’C là hình thang cân
⇒ CD = AB'
⇒ A B 2 + C D 2 = A B 2 + A B ' 2
Mà tam giác BAB’ vuông tại A do = 90° ( góc nội tiếp chắn nửa đường tròn)
⇒ A B 2 + C D 2 = A B 2 + A B ' 2 = 2 R 2 = 4 R 2 (đpcm)
Kéo dài DA và CB lần lượt về phía A và B cắt nhau tại E
Xét tam giác DCE có \(\widehat{DEC}\) = 1800 - (\(\widehat{EDC}\) + \(\widehat{ECD}\)) = 1800- 900 = 900
⇒\(\Delta\)DEC vuông tại E
Xét \(\Delta\)AEB Theo pytago ta có: AE2 + BE2 = AB2
Tương tự ta có: DE2 + CE2 = DC2
Cộng vế với vế ta có: AE2 + BE2 + DE2 + CE2 = AB2+DC2
AE2 + CE2+BE2+DE2 = AB2+DC2 (1)
Xét \(\Delta\)AEC theo pytago ta có: AE2+ CE2 = AC2
Tương tự ta có: BE2 + DE2 = BD2
Cộng vế với vế ta có: AE2 + CE2 + BE2+ DE2 = AC2 + BD2 (2)
Từ (1) và (2) ta có: AC2 + BD2 = AB2 + DC2(đpcm)
\(AB^2+CD^2-\left(BC^2+DA^2\right)=\overrightarrow{AB}^2+\overrightarrow{CD}^2-\overrightarrow{BC}^2-\overrightarrow{AD}^2\)
\(=\left(\overrightarrow{AB}+\overrightarrow{AD}\right)\left(\overrightarrow{AB}-\overrightarrow{AD}\right)+\left(\overrightarrow{CD}-\overrightarrow{BC}\right)\left(\overrightarrow{CD}+\overrightarrow{BC}\right)\)
\(=\overrightarrow{DB}\left(\overrightarrow{AB}+\overrightarrow{AD}\right)+\overrightarrow{DB}\left(\overrightarrow{BC}+\overrightarrow{DC}\right)\)
\(=\overrightarrow{DB}\left(\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{BC}+\overrightarrow{DC}\right)\)
\(=2\overrightarrow{AC}.\overrightarrow{DB}\) (đpcm)
Giả sử AB ⊥ CD ta phải chứng minh:
Thật vậy, kẻ BE ⊥ CD tại E, do AB⊥CD ta suy ra CD ⊥ (ABE) nên CD ⊥ AE. Áp dụng định lí Py-ta-go cho các tam giác vuông AEC, BEC, AED và BED ta có:
Nếu A C 2 − A D 2 = B C 2 − B D 2 = k 2 thì trong mặt phẳng (ACD) điểm A thuộc đường thẳng vuông góc với CD tại điểm H trên tia ID với I là trung điểm của CD sao cho
Tương tự điểm B thuộc đường thẳng vuông góc với CD cũng tại điểm H nói trên. Từ đó suy ra CD vuông góc với mặt phẳng (ABH) hay CD ⊥ AB.
Nếu A C 2 − A D 2 = B C 2 − B D 2 = - k 2 thì ta có và đưa về trường hợp xét như trên A C 2 − A D 2 = B C 2 − B D 2 = - k 2 .
Chú ý. Từ kết quả của bài toán trên ta suy ra:
Tứ diện ABCD có các cặp cạnh đối diện vuông góc với nhau khi và chỉ khi A B 2 + C D 2 = A C 2 + B C 2 .
1. xét tam giác BAD và tam giác BCA:
góc D= góc A = 90o
góc B chung
=> tam giác BAD ~ tam giác BCA (g.g)
=> \(\dfrac{AB}{BC}\)=\(\dfrac{BD}{AB}\)
=> AB2=BD.BC
Vẽ BO vuông góc AC tại O
DO phải cắt một trong 2 đoạn thẳng DC,DA. Giả sử BO cắt CD
Trên BO lấy E sao cho CD=CE
Tứ giác ABCE có:
AB2+CE2=BC2+AE2AB2+CE2=BC2+AE2
⇒AB2+CD2=BC2+AE2⇒AB2+CD2=BC2+AE2
Mà ⇒AB2+CD2=BC2+AD2⇒AB2+CD2=BC2+AD2
⇒D≡E⇒D≡E
⇒⇒ BD vuông góc AC.
⇒SABCD=BD.AC2⇒SABCD=BD.AC2
Nếu BD.AC2=AC2+BD24⇔(AC−BD)2=0BD.AC2=AC2+BD24⇔(AC−BD)2=0
Đẳng thức này chỉ xảy ra khi AC=BD