K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 11 2018

\(y'=e^{\dfrac{-x^2}{2}}+x\left(e^{\dfrac{-x^2}{2}}\right)'=e^{\dfrac{-x^2}{2}}+x.e^{\dfrac{-x^2}{2}}.\left(\dfrac{-x^2}{2}\right)'=e^{\dfrac{-x^2}{2}}-x^2.e^{\dfrac{-x^2}{2}}\)

Cách khác: lấy ln 2 vế \(lny=lnx+ln\left(e^{\dfrac{-x^2}{2}}\right)=lnx-\dfrac{x^2}{2}\)

Đạo hàm 2 vế:

\(\dfrac{y'}{y}=\dfrac{1}{x}-x\Rightarrow y'=y\left(\dfrac{1}{x}-x\right)=x.e^{\dfrac{-x^2}{2}}\left(\dfrac{1}{x}-x\right)=e^{\dfrac{-x^2}{2}}-x^2.e^{\dfrac{-x^2}{2}}\)

25 tháng 2 2021

a/ \(\int\dfrac{x^2-3x+1}{x}dx=\int\left(x-3+\dfrac{1}{x}\right)dx=\int x.dx-3x+\int\dfrac{dx}{x}=\dfrac{1}{2}.x^2-3x+ln\left|x\right|+C\)

b/ \(I=\int x.e^{2x}dx\)

\(\left\{{}\begin{matrix}u=x\\dv=e^{2x}dx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=dx\\v=\dfrac{1}{2}e^{2x}\end{matrix}\right.\)

\(\Rightarrow I=\dfrac{1}{2}.x.e^{2x}-\dfrac{1}{2}\int e^{2x}.dx=\dfrac{1}{2}x.e^{2x}-\dfrac{1}{4}e^{2x}\)

 

6 tháng 10 2018

Đáp án B

Ta có  y ' = e − x − x 2 e − x ⇒ e − x − x e − x > 0 ⇔ 1 − x > 0 ⇔ x < 1

31 tháng 1 2021

\(\int\dfrac{xe^x}{\left(x+1\right)^2}dx\)

\(=\int e^x.\dfrac{\left(x+1\right)-1}{\left(x+1\right)^2}dx=\int e^x.[\dfrac{1}{x+1}-\dfrac{1}{\left(x+1\right)^2}]dx\)

\(=\int\dfrac{e^x}{x+1}dx-\int\dfrac{e^x}{\left(x+1\right)^2}dx=\dfrac{1}{x+1}e^x+\int\dfrac{e^x}{\left(x+1\right)^2}dx-\int\dfrac{e^x}{\left(x+1\right)^2}dx\)

\(=\dfrac{e^x}{x+1}+C\)

Ko chac :v

NV
31 tháng 1 2021

\(I=\int\dfrac{x.e^x}{\left(x+1\right)^2}dx\)

Đặt \(\left\{{}\begin{matrix}u=xe^x\\dv=\dfrac{1}{\left(x+1\right)^2}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=e^x\left(x+1\right)dx\\v=-\dfrac{1}{x+1}\end{matrix}\right.\)

\(I=\dfrac{-xe^x}{x+1}+\int e^xdx=\dfrac{-xe^x}{x+1}+e^x+C=\dfrac{e^x}{x+1}+C\)

5 tháng 5 2016

xét hàm số y=\(x.e^x.lnx\)

Ta có y' =\(e^xlnx+xe^xlnx+xe^x.\frac{1}{x}\)

             =\(e^xlnx+xe^xlnx+e^x\left(1+lnx+x.lnx\right)\)

 

15 tháng 3 2023

+) \(Y=3x^2+2\)

=> \(Y'=6x\)

\(x_0=0\Rightarrow Y'=0\)

+) \(Y=x^3+2x-1\)

=> \(Y'=3x^2+2\)

\(x_0=0\Rightarrow Y'=2\)

4 tháng 4 2019

26 tháng 5 2017

NV
30 tháng 4 2021

a. \(y'=\dfrac{-1}{\left(x-1\right)}\)

b. \(y'=\dfrac{5}{\left(1-3x\right)^2}\)

c. \(y=\dfrac{\left(x+1\right)^2+1}{x+1}=x+1+\dfrac{1}{x+1}\Rightarrow y'=1-\dfrac{1}{\left(x+1\right)^2}=\dfrac{x^2+2x}{\left(x+1\right)^2}\)

d. \(y'=\dfrac{4x\left(x^2-2x-3\right)-2x^2\left(2x-2\right)}{\left(x^2-2x-3\right)^2}=\dfrac{-4x^2-12x}{\left(x^2-2x-3\right)^2}\)

e. \(y'=1+\dfrac{2}{\left(x-1\right)^2}=\dfrac{x^2-2x+3}{\left(x-1\right)^2}\)

g. \(y'=\dfrac{\left(4x-4\right)\left(2x+1\right)-2\left(2x^2-4x+5\right)}{\left(2x+1\right)^2}=\dfrac{4x^2+4x-14}{\left(2x+1\right)^2}\)

NV
30 tháng 4 2021

2.

a. \(y'=4\left(x^2+x+1\right)^3.\left(x^2+x+1\right)'=4\left(x^2+x+1\right)^3\left(2x+1\right)\)

b. \(y'=5\left(1-2x^2\right)^4.\left(1-2x^2\right)'=-20x\left(1-2x^2\right)^4\)

c. \(y'=3\left(\dfrac{2x+1}{x-1}\right)^2.\left(\dfrac{2x+1}{x-1}\right)'=3\left(\dfrac{2x+1}{x-1}\right)^2.\left(\dfrac{-3}{\left(x-1\right)^2}\right)=\dfrac{-9\left(2x+1\right)^2}{\left(x-1\right)^4}\)

d. \(y'=\dfrac{2\left(x+1\right)\left(x-1\right)^3-3\left(x-1\right)^2\left(x+1\right)^2}{\left(x-1\right)^6}=\dfrac{-x^2-6x-5}{\left(x-1\right)^4}\)

e. \(y'=-\dfrac{\left[\left(x^2-2x+5\right)^2\right]'}{\left(x^2-2x+5\right)^4}=-\dfrac{2\left(x^2-2x+5\right)\left(2x-2\right)}{\left(x^2-2x+5\right)^4}=-\dfrac{4\left(x-1\right)}{\left(x^2-2x+5\right)^3}\)

f. \(y'=4\left(3-2x^2\right)^3.\left(3-2x^2\right)'=-16x\left(3-2x^2\right)^3\)