Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Đặt \(\left\{\begin{matrix} x+y=a\\ xy=b\end{matrix}\right.\Rightarrow x^2+y^2+xy=a^2-b=3\)
Vì \(x,y\geq 0\rightarrow b\geq 0\rightarrow a^2=3+b\geq 3\)
Biến đổi:
\(T=(x+y)^3-3xy(x+y)-[(x+y)^2-2xy]\)
\(\Leftrightarrow T=a^3-3ab-a^2+2b\)
\(\Leftrightarrow T=a^3-3a(a^2-3)-a^2+2(a^2-3)=-2a^3+a^2+9a-6\)
Xét đạo hàm và lập bảng biến thiên hàm trên với điều kiện \(a\geq \sqrt{3}\) ta thu được \(T_{\max}=3\sqrt{3}-3\Leftrightarrow a=\sqrt{3}\Leftrightarrow (x,y)=(\sqrt{3},0)\)
Hàm không có min.
\(8,\dfrac{bc}{\sqrt{3a+bc}}=\dfrac{bc}{\sqrt{\left(a+b+c\right)a+bc}}=\dfrac{bc}{\sqrt{a^2+ab+ac+bc}}\)
\(=\dfrac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{b}{a+b}+\dfrac{c}{a+c}}{2}\)
Tương tự cho các số còn lại rồi cộng vào sẽ được
\(S\le\dfrac{3}{2}\)
Dấu "=" khi a=b=c=1
Vậy
\(7,\sqrt{\dfrac{xy}{xy+z}}=\sqrt{\dfrac{xy}{xy+z\left(x+y+z\right)}}=\sqrt{\dfrac{xy}{xy+xz+yz+z^2}}\)
\(=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\le\dfrac{\dfrac{x}{x+z}+\dfrac{y}{y+z}}{2}\)
Cmtt rồi cộng vào ta đc đpcm
Dấu "=" khi x = y = z = 1/3
\(\int\dfrac{xe^x}{\left(x+1\right)^2}dx\)
\(=\int e^x.\dfrac{\left(x+1\right)-1}{\left(x+1\right)^2}dx=\int e^x.[\dfrac{1}{x+1}-\dfrac{1}{\left(x+1\right)^2}]dx\)
\(=\int\dfrac{e^x}{x+1}dx-\int\dfrac{e^x}{\left(x+1\right)^2}dx=\dfrac{1}{x+1}e^x+\int\dfrac{e^x}{\left(x+1\right)^2}dx-\int\dfrac{e^x}{\left(x+1\right)^2}dx\)
\(=\dfrac{e^x}{x+1}+C\)
Ko chac :v
\(I=\int\dfrac{x.e^x}{\left(x+1\right)^2}dx\)
Đặt \(\left\{{}\begin{matrix}u=xe^x\\dv=\dfrac{1}{\left(x+1\right)^2}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=e^x\left(x+1\right)dx\\v=-\dfrac{1}{x+1}\end{matrix}\right.\)
\(I=\dfrac{-xe^x}{x+1}+\int e^xdx=\dfrac{-xe^x}{x+1}+e^x+C=\dfrac{e^x}{x+1}+C\)
Lời giải:
"3 cực trị" bạn nói hẳn là hoành độ.
Ta có \(y'=x^3+mx^2-x-m=0\)
\(\Leftrightarrow (x+m)(x-1)(x+1)=0\)
Để hàm có ba cực trị thì trước tiên \(m\neq \pm 1\)
Khi đó, hoành độ ba điểm cực trị là \(-1,1,-m\)
TH1 Nếu một cấp số nhân gồm 3 số trên có \(1,-1\) đứng cạnh nhau thì công bội có thể là \(\pm 1\Rightarrow m=\pm 1\) (vô lý)
TH2: \(-m\) nằm giữa.
Giả sử ta có CSN là \(-1,-m,1\) thì \(\left\{\begin{matrix} -m=-1q\\ 1=-mq\end{matrix}\right.\Rightarrow \left\{\begin{matrix} m=q\\ -1=mq\end{matrix}\right.\Rightarrow -1=m^2\) (vô lý)
Tương tự SCN là \(1,-m,-1\) cũng vô lý.
Vậy không có $m$ thỏa mãn
Lời giải:
Ta có: \(y'=x^4-3x^2+2=0\Leftrightarrow \left[\begin{matrix} x=\pm 1\\ x=\pm \sqrt{2}\end{matrix}\right.\)
Lập bảng biến thiên, hoặc xét:
\(y''=4x^3-6x\)
\(\Rightarrow \left\{\begin{matrix} y''(1)=-2< 0\\ y''(-1)=2>0\\ y''(\sqrt{2})=2\sqrt{2}>0\\ y''(-\sqrt{2})=-2\sqrt{2}< 0\end{matrix}\right.\)
Do đó các điểm cực tiểu của hàm số là \(x=-1; x=\sqrt{2}\)
Suy ra tổng các giá trị cực tiểu của hàm số :
\(f(-1)+f(\sqrt{2})=\frac{10074}{5}+\frac{4\sqrt{2}}{5}+2016=\frac{20154+4\sqrt{2}}{5}\)
Đáp án B.
\(y'=e^{\dfrac{-x^2}{2}}+x\left(e^{\dfrac{-x^2}{2}}\right)'=e^{\dfrac{-x^2}{2}}+x.e^{\dfrac{-x^2}{2}}.\left(\dfrac{-x^2}{2}\right)'=e^{\dfrac{-x^2}{2}}-x^2.e^{\dfrac{-x^2}{2}}\)
Cách khác: lấy ln 2 vế \(lny=lnx+ln\left(e^{\dfrac{-x^2}{2}}\right)=lnx-\dfrac{x^2}{2}\)
Đạo hàm 2 vế:
\(\dfrac{y'}{y}=\dfrac{1}{x}-x\Rightarrow y'=y\left(\dfrac{1}{x}-x\right)=x.e^{\dfrac{-x^2}{2}}\left(\dfrac{1}{x}-x\right)=e^{\dfrac{-x^2}{2}}-x^2.e^{\dfrac{-x^2}{2}}\)