K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2018

Sửa đề : Tìm m để bpt \(4mx>x+1\)có nghiệm .......v..........v.............

Ta có : \(4mx>x+1\)

        \(\Leftrightarrow4mx-x>1\)

        \(\Leftrightarrow x\left(4m-1\right)>1\)

       \(\Leftrightarrow x>\frac{1}{4m-1}\)

Để x > 9 thì \(\frac{1}{4m-1}\ge9\)

           \(\Leftrightarrow1\ge9\left(4m-1\right)\)

          \(\Leftrightarrow1\ge36m-9\)

          \(\Leftrightarrow10\ge36m\)

           \(\Leftrightarrow m\le\frac{18}{5}\)

18 tháng 11 2018

a, Câu hỏi tương đương với đề bài vì nghiệm chính là x nên 2 câu tương đương nhau

b, -5 > x

Mà \(x>\frac{1}{4m-1}\)

\(\Rightarrow-5>\frac{1}{4m-1}\)

Giải ra tìm được m

4 tháng 3 2021

a, Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m-1>0\\\Delta'=m^2-4m+4+m-1< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>1\\\left(m-\dfrac{3}{2}\right)^2< -\dfrac{3}{4}\end{matrix}\right.\)

\(\Leftrightarrow\) vô nghiệm

Vậy không tồn tại giá trị m thỏa mãn

b, Yêu cầu bài toán thỏa mãn khi phương trình \(\left(m-1\right)x^2+2\left(m-2\right)x-1< 0\) có nghiệm với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}m-1< 0\\\Delta'=m^2-3m+3< 0\end{matrix}\right.\)

\(\Leftrightarrow\) vô nghiệm

Vậy không tồn tại giá trị m thỏa mãn

NV
6 tháng 3 2021

Khi \(x\ge0\Rightarrow2x+1>0\) nên BPT tương đương:

\(x^2-3x+m>\left(2x+1\right)^2\)

\(\Leftrightarrow x^2-3x+m>4x^2+4x+1\)

\(\Leftrightarrow3x^2+7x+1< m\)

Xét hàm \(f\left(x\right)=3x^2+7x+1\) trên \(\left[0;2\right]\)

\(-\dfrac{b}{2a}=-\dfrac{7}{6}\notin\left[0;2\right]\) ; \(f\left(0\right)=1\) ; \(f\left(2\right)=27\)

\(\Rightarrow f\left(x\right)\ge1\Rightarrow\) pt có nghiệm trên đoạn đã cho khi \(m>1\)

19 tháng 3 2021

1.

\(2\left|x-m\right|+x^2+2>2mx\)

\(\Leftrightarrow\left(x-m\right)^2+2\left|x-m\right|-m^2+2>0\)

\(\Leftrightarrow t^2+2t-m^2+2>0\left(t=\left|x-m\right|\ge0\right)\)

\(\Leftrightarrow m^2< f\left(t\right)=t^2+2t+2\)

Yêu cầu bài toán thỏa mãn khi \(m^2< minf\left(t\right)=2\)

\(\Leftrightarrow-\sqrt{2}< m< 2\)

Vậy \(-\sqrt{2}< m< 2\)

19 tháng 3 2021

2.

\(x^2+2\left|x+m\right|+2mx+3m^2-3m+1< 0\)

\(\Leftrightarrow\left(x+m\right)^2+2\left|x+m\right|+2m^2-3m+1< 0\)

\(\Leftrightarrow\left(\left|x+m\right|+1\right)^2< -2m^2+3m\)

Ta có \(VT=\left(\left|x+m\right|+1\right)^2=\left(-\left|x+m\right|-1\right)^2\le\left(-1\right)^2=1\)

Yêu cầu bài toán thỏa mãn khi \(VP=-2m^2+3m>1\)

\(\Leftrightarrow2m^2-3m+1< 0\)

\(\Leftrightarrow\dfrac{1}{2}< m< 1\)

Câu 1: 

Ta có: \(\Delta=\left[-2\left(m+2\right)\right]^2-4\cdot m\cdot\left(2+3m\right)\)

\(\Leftrightarrow\Delta=\left(2m+4\right)^2-4m\left(2+3m\right)\)

\(\Leftrightarrow\Delta=4m^2+16m+16-8m-12m^2\)

\(\Leftrightarrow\Delta=-8m^2+8m+16\)

\(\Leftrightarrow\Delta=-8\left(m^2-m-2\right)\)

Để phương trình vô nghiệm thì \(\Delta< 0\)

\(\Leftrightarrow m^2-m-2>0\)

\(\Leftrightarrow\left(m-2\right)\left(m+1\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m-2>0\\m+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}m-2< 0\\m+1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m>2\\m>-1\end{matrix}\right.\\\left\{{}\begin{matrix}m< 2\\m< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>2\\m< -1\end{matrix}\right.\)

4 tháng 3 2021

Câu 1 

Để pt vô nghiệm \(\Rightarrow\Delta'=\left(m+2\right)^2-\left(3m+2\right)m=m^2+4m+4-3m^2-2m=-2m^2+2m+4=-2\left(m^2-m-2\right)=-2\left(m+1\right)\left(m-2\right)< 0\) \(\Leftrightarrow\left(m+1\right)\left(m-2\right)>0\Leftrightarrow\left[{}\begin{matrix}m< -1\\m>2\end{matrix}\right.\)

17 tháng 3 2021

\(f\left(x\right)=x^2-2\left(m-1\right)x+m-2\)

Yêu cầu bài toán thõa mãn khi \(f\left(x\right)=0\) có hai nghiệm thỏa mãn \(x_1\le1< 3\le x_2\)

\(\left\{{}\begin{matrix}\Delta'=m^2-3m+3\ge0\\f\left(1\right)\le0\\f\left(3\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\in R\\-m+1\le0\\15-5m\le0\end{matrix}\right.\)

\(\Leftrightarrow m\ge3\)

Bài 2: 

Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0

hay -2<m<2