K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

Ta có: \(D=\sqrt{16x^4}-2x^2+1\)

\(=4x^2-2x^2+1\)

\(=2x^2+1\)

1:

a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)

Dấu = xảy ra khi x=0

b: \(B=\sqrt{x+8}-7>=-7\)

Dấu = xảy ra khi x=-8

11 tháng 2 2017

1 )Vì \(\left(x+2\right)^2\ge0;\left(y-3\right)^2\ge0\)

\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)

\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2+1\ge1\)

Dấu "=: xảy ra <=> \(\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}}\)

Vậy ........

2 ) \(\frac{1}{\left(x-2\right)^2+2}\ge\frac{1}{2}\)

Dấu "=" xảy ra <=> x = 2

Vậy ..........

8 tháng 5 2018

+) Min: \(A=\frac{x^2}{x^4+x^2+1}\ge0\forall x\) 

Dấu "=" <=> x=0

+) Max: \(1-3A=\frac{x^4-2x^2+1}{x^4+x^2+1}=\frac{\left(x^2-1\right)^2}{x^4+x^2+1}\ge0\)

\(\Rightarrow A\le\frac{1}{3}\)Dấu "=" <=> x= 1,-1

GTNN của A:

A=x2+1/x2-x+1=1+x/x2+1-x

=>A>1

suy ra:GTNN cùa A=2 với x=1

11 tháng 10 2017

A=2

X=1

10 tháng 11 2019

\(Q=\frac{x^2-x+1}{x^2+x+1}=\frac{\frac{2}{3}x^2-\frac{4}{3}x+\frac{2}{3}}{x^2+x+1}+\frac{1}{3}=\frac{2}{3}\frac{\left(x-1\right)^2}{x^2+x+1}+\frac{1}{3}\ge\frac{1}{3}\)

\(\Rightarrow MIN\left(Q\right)=\frac{1}{3}\)Dấu "=" xảy ra khi x=1

\(Q=\frac{x^2-x+1}{x^2+x+1}=\frac{-2x^2-4x-2}{x^2+x+1}+3=-2\frac{\left(x+1\right)^2}{x^2+x+1}+3\ge3\)

\(\Rightarrow MAX\left(Q\right)=3\)Dấu "=" xảy ra khi x=-1

10 tháng 11 2019

Viết lộn, \(Q\le3\)mới đúng

trả lời giúp mk với 

7 tháng 8 2016

chịu , hổng bt lun ak