K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2023

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

b: Xét ΔMBA vuông tại M và ΔMCD vuông tại M có

MB=MC

MA=MD

Do đó: ΔMBA=ΔMCD

=>\(\widehat{MBA}=\widehat{MCD}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

c: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có

MB=MC

\(\widehat{MBE}=\widehat{MCF}\)

Do đó: ΔBEM=ΔCFM

=>ME=MF 

ΔBEM=ΔCFM

=>\(\widehat{BME}=\widehat{CMF}\)

mà \(\widehat{BME}+\widehat{EMC}=180^0\)(hai góc kề bù)

nên \(\widehat{CMF}+\widehat{EMC}=180^0\)

=>F,M,E thẳng hàng

mà MF=ME

nên M là trung điểm của EF

24 tháng 12 2020
さ→❖๖☆☆ I⃣K⃣K⃣I⃣ G⃣ấU⃣ A⃣N⃣I⃣M⃣E⃣❖༻꧂ •๖ۣۜTεαм ƒαʋσυɾĭтε αηĭмε⁀ᶦᵈᵒᶫ

a: Xét ΔABM và ΔACM có 

AB=AC

AM chung

BM=CM

DO đó: ΔABM=ΔACM

b: Xét ΔABM và ΔDCM có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM

Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AB//DC

5 tháng 1 2022

Vẽ hình giúp mình luôn đc không ạ

29 tháng 12 2023

a: Xét ΔMAC và ΔMDB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔMAC=ΔMDB

b: Xét ΔMEB và ΔMFC có

ME=MF

\(\widehat{BME}=\widehat{CMF}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMEB=ΔMFC

=>\(\widehat{MEB}=\widehat{MFC}\)

=>\(\widehat{MFC}=90^0\)

=>CF\(\perp\)AD

c: Xét tứ giác BFCE có

M là trung điểm chung của BC và FE

=>BFCE là hình bình hành

=>BF//CE và BF=CE

Ta có: BF//CE

B\(\in\)FG

Do đó: BG//CE

Ta có: BF=CE

BF=BG

Do đó: BG=CE
Xét tứ giác BGEC có

BG//EC

BG=EC

Do đó: BGEC là hình bình hành

=>BE cắt GC tại trung điểm của mỗi đường

mà H là trung điểm của BE

nên H là trung điểm của GC

=>G,H,C thẳng hàng

6 tháng 12 2021

Bn tự vẽ hình

a) Xét Δ AMB và Δ AMC

AB=AC

BM=MC

AM chung

⇒ Δ AMB = Δ AMC

b) Xét Δ AMB và  Δ DMC

DM=AM

BM=CM

AMB=CMD (đối đỉnh)

⇒ Δ AMB = Δ DMC

⇒ ABM=DCM (2 góc t.ứng)

Mà 2 góc này ở vị trí SLT

⇒ AB//CD

c) Bn tự lm, tương tự phần b)

6 tháng 12 2021

a) Xét tam giác AMB và tam giác AMC có:

+ AB = AC (gt).

+ MB = MC (M là trung điểm của BC).

+ AM chung.

=> Tam giác AMB = Tam giác AMC (c - c - c).

b) Xét tứ giác ABCD có:

+ M là trung điểm của BC (gt).

+ M là trung điểm của AD (MD = MA).

=> Tứ giác ABCD là hình bình hành (dhnb).

=> AB // CD (Tính chất hình bình hành).

c) Tứ giác ABCD là hình bình hành (cmt).

=> AC // BD (Tính chất hình bình hành).

a: Xét ΔABM và ΔACM có

AB=AC

AM chug

BM=CM

Do đó: ΔABM=ΔACM

b:

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

Xét ΔAMC vuông tại M và ΔBMD vuông tại M có 

MC=MD

MA=MB

Do đó: ΔAMC=ΔBMD

Suy ra: AC=BD

c: Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của CB

Do đó: ABDC là hình bình hành

Suy ra: AB//CD

d: Xét tứ giác ABCI có

AI//BC

AI=BC

Do đó: ABCI là hình bình hành

Suy ra: CI//AB

mà CD//AB

và CI,CD có điểm chung là C

nên C,I,D thẳng hàng

a) Xét ΔABM và ΔDCM có 

MB=MC(M là trung điểm của BC)

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MA=MD(gt)

Do đó: ΔABM=ΔDCM(c-g-c)

b) Ta có: ΔABM=ΔDCM(cmt)

nên AB=CD(Hai cạnh tương ứng)

mà AB<AC(gt)

nên CD<AC

Xét ΔACD có 

CD<AC(cmt)

mà góc đối diện với cạnh CD là \(\widehat{CAD}\)

và góc đối diện với cạnh AC là \(\widehat{ADC}\)

nên \(\widehat{CAD}< \widehat{ADC}\)(Định lí quan hệ giữa góc và cạnh đối diện trong tam giác)

\(\Leftrightarrow\widehat{CAM}< \widehat{MDC}\)

mà \(\widehat{BAM}=\widehat{MDC}\)(ΔABM=ΔDCM)

nên \(\widehat{BAM}>\widehat{CAM}\)(đpcm)

20 tháng 3 2023

loading...  

\(\text{#TNam}\)

`a,` Vì Tam giác `ABC` cân tại `A -> AB=AC,` \(\widehat{B}=\widehat{C}\)

Xét Tam giác `ABM` và Tam giác `ACM:`

`AB=AC (CMT)`

\(\widehat{B}=\widehat{C}\)

`MB=MC (g``t)`

`=> \text {Tam giác ABM = Tam giác ACM (c-g-c)}`

`b,` Xét Tam giác `AMB` và Tam giác `CMD:`

`AM=MD (g``t)`

\(\widehat{AMB}=\widehat{CMD}\) `( \text {2 góc đối đỉnh})`

`MB = MC (g``t)`

`=> \text {Tam giác AMB = Tam giác CMD (c-g-c)}`

`->`\(\widehat{ABC}=\widehat{DCB}\) `(\text {2 góc tương ứng})`

Mà `2` góc này nằm ở vị trí sole trong

`-> \text {AB // CD}`

`c,` Vì Tam giác `AMB =` Tam giác `CMD (b)`

`-> AB=CD (\text {2 cạnh tương ứng})`

Mà `AB = AC (a)`

`-> AC = CD`

Xét Tam giác `ACD: AC = CD`

`-> \text {Tam giác ACD cân tại C}`

loading...