Tìm số tự nhiên n,biết rằng: (2n+5) chia hết (n+2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gợi ý : n^2 - 2n có chữ số tận cùng là 0 hoặc 5
Vì n chia hết cho 2 => n có chữ số tận cùng là 0;2;4;6;8
Xét từng TH và lập luận để bớt TH cần xét
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>(n+8)(n-8) chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc Ư(65)
=>n^2+1 thuộc {1;5;13;65}
=>n^2 thuộc {0;4;12;64}
mà n là số tự nhiên
nên n thuộc {0;2;8}
Thử lại, ta sẽ thấy n=8 không thỏa mãn
=>\(n\in\left\{0;2\right\}\)
2/
a/
Gọi số cần tìm là \(\overline{bb}\)
Theo đề bài \(\overline{bb}⋮2\) => b chẵn
\(\overline{bb}:5\) dư 2 => b={2;7}
Do b chẵn => b=2
Số cần tìm \(\overline{bb}=22\)
b/
Gọi số cần tìm là \(\overline{bbb}\)
Theo đề bài \(\overline{bb}:2\) dư 1 => b lẻ
\(\overline{bbb}⋮5\) => b={0;5}
Do b lẻ => b=5
Số cần tìm \(\overline{bbb}=555\)
c/
Gọi số cần tìm là \(\overline{bb}\)
Theo đề bài \(\overline{bb}:5\) dư 1 => b={1;6}
\(\overline{bb}⋮3\Rightarrow b+b=2b⋮3\Rightarrow b⋮3\)
=> b=6
Số cần tìm là \(\overline{bb}=66\)
1/
a/
\(\dfrac{3n+1}{n-1}=\dfrac{3\left(n-1\right)+4}{n-1}=3+\dfrac{4}{n-1}\)
\(\left(3n+1\right)⋮\left(n-1\right)\) khi \(4⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)=\left\{-4;-2;-1;1;2;4\right\}\Rightarrow n=\left\{-3;-1;0;2;3;5\right\}\)
b/
\(\left(n-3\right)⋮\left(2n-1\right)\Rightarrow2\left(n-3\right)⋮\left(2n-1\right)\)
\(\dfrac{2\left(n-3\right)}{2n-1}=\dfrac{2n-6}{2n-1}=\dfrac{\left(2n-1\right)-5}{2n-1}=1-\dfrac{5}{2n-1}\)
\(2\left(n-3\right)⋮\left(2n-1\right)\) khi \(5⋮\left(2n-1\right)\Rightarrow\left(2n-1\right)=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow n=\left\{-2;0;1;3\right\}\)
n chia hết cho 2
=>n có chữ số tận cùng là 0;2;4;6;8
=>n=10k; n=10k+2;n=10k+4;n=10k+6;n=10k+8
Đặt \(A=n^2-2n\)
\(=n\left(n-2\right)\)
TH1: n=10k
\(A=n\left(n-2\right)=10k\left(10k-2\right)⋮5\)
=>Nhận
TH2: n=10k+2
=>\(A=n\left(n-2\right)=\left(10k+2\right)\left(10k+2-2\right)=10k\left(10k+2\right)⋮5\)
=>Nhận
TH3: n=10k+4
\(A=n\left(n-2\right)\)
\(=\left(10k+4\right)\left(10k+4-2\right)\)
\(=\left(10k+4\right)\left(10k+2\right)\) không chia hết cho 5
=>Loại
TH4: n=10k+6
A=n(n-2)
=(10k+6)(10k+6-2)
=(10k+6)(10k+4) không chia hết cho 5
=>Loại
Th5: n=10k+8
A=n(n-2)
=(10k+8)(10k+8-2)
=(10k+8)(10k+6) không chia hết cho 5
=>Loại
Vậy: n có chữ số tận cùng là 0 hoặc 2
n chia hết cho 2
=>n có chữ số tận cùng là 0;2;4;6;8
=>n=10k; n=10k+2;n=10k+4;n=10k+6;n=10k+8
Đặt A = n 2 − 2 n = n ( n − 2 ) TH1: n=10k A = n ( n − 2 ) = 10 k ( 10 k − 2 ) ⋮ 5
=>Nhận
TH2: n=10k+2
=> A = n ( n − 2 ) = ( 10 k + 2 ) ( 10 k + 2 − 2 ) = 10 k ( 10 k + 2 ) ⋮ 5
=>Nhận
TH3: n=10k+4
A = n ( n − 2 ) = ( 10 k + 4 ) ( 10 k + 4 − 2 ) = ( 10 k + 4 ) ( 10 k + 2 ) không chia hết cho 5
=>Loại TH4: n=10k+6 A=n(n-2) =(10k+6)(10k+6-2) =(10k+6)(10k+4) không chia hết cho 5
=>Loại
Th5: n=10k+8 A=n(n-2) =(10k+8)(10k+8-2) =(10k+8)(10k+6) không chia hết cho 5
=>Loại
Vậy: n có chữ số tận cùng là 0 hoặc 2
3.a)n và 2n có tổng các chữ số bằng nhau => hiệu của chúng chia hết cho 9
mà 2n-n=n=>n chia hết cho 9 => đpcm
\(2n+5⋮n+2\)
\(\Leftrightarrow2\left(n+2\right)+1⋮n+2\)
\(\Leftrightarrow1⋮n+2\)
\(n+2\inƯ\left(1\right)=\pm1\)
Với n+2= -1
=> n= -3
Với n+2= 1
=> n= -1
Vậy n= -3 hoặc n= -1.
2n+5 chia hết n+2
2(n+2)-4+5 chia het n+2
2(n+2)+1 chia het n+2
1 chia hết n+2 (vì 2(n+2) chia het n+2
n+2 thuộc ước của 1
mà n là số tự nhiên nên n+2 thuộc {1}
TA CO N+2=1
n=1-2
n=-1
mà n là số tự nhiên
nên n thuộc rổng