Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n2-n = n*(n-1),
TH1 : n = 0, thỏa mãn, TH2 n-1 chia hết cho 5, suy ra n =6, còn n=1 thì ko thỏa mãn.
gợi ý:
n^2-2n có chữ số tc là 0 hoặc 5
Vì n chia hết cho 2 =>n có cs tận cùng là : 0,2,4,6,8
xét từng Th
n chia hết cho 2
=>n có chữ số tận cùng là 0;2;4;6;8
=>n=10k; n=10k+2;n=10k+4;n=10k+6;n=10k+8
Đặt \(A=n^2-2n\)
\(=n\left(n-2\right)\)
TH1: n=10k
\(A=n\left(n-2\right)=10k\left(10k-2\right)⋮5\)
=>Nhận
TH2: n=10k+2
=>\(A=n\left(n-2\right)=\left(10k+2\right)\left(10k+2-2\right)=10k\left(10k+2\right)⋮5\)
=>Nhận
TH3: n=10k+4
\(A=n\left(n-2\right)\)
\(=\left(10k+4\right)\left(10k+4-2\right)\)
\(=\left(10k+4\right)\left(10k+2\right)\) không chia hết cho 5
=>Loại
TH4: n=10k+6
A=n(n-2)
=(10k+6)(10k+6-2)
=(10k+6)(10k+4) không chia hết cho 5
=>Loại
Th5: n=10k+8
A=n(n-2)
=(10k+8)(10k+8-2)
=(10k+8)(10k+6) không chia hết cho 5
=>Loại
Vậy: n có chữ số tận cùng là 0 hoặc 2
n chia hết cho 2
=>n có chữ số tận cùng là 0;2;4;6;8
=>n=10k; n=10k+2;n=10k+4;n=10k+6;n=10k+8
Đặt A = n 2 − 2 n = n ( n − 2 ) TH1: n=10k A = n ( n − 2 ) = 10 k ( 10 k − 2 ) ⋮ 5
=>Nhận
TH2: n=10k+2
=> A = n ( n − 2 ) = ( 10 k + 2 ) ( 10 k + 2 − 2 ) = 10 k ( 10 k + 2 ) ⋮ 5
=>Nhận
TH3: n=10k+4
A = n ( n − 2 ) = ( 10 k + 4 ) ( 10 k + 4 − 2 ) = ( 10 k + 4 ) ( 10 k + 2 ) không chia hết cho 5
=>Loại TH4: n=10k+6 A=n(n-2) =(10k+6)(10k+6-2) =(10k+6)(10k+4) không chia hết cho 5
=>Loại
Th5: n=10k+8 A=n(n-2) =(10k+8)(10k+8-2) =(10k+8)(10k+6) không chia hết cho 5
=>Loại
Vậy: n có chữ số tận cùng là 0 hoặc 2
n chia hết cho 2 => n có tận cùng là các chữ số chẵn (1)
Ta có : \(n^2-n=n\left(n-1\right)\) chia hết cho 5
=> n chia hết cho 5 hoặc n-1 chia hết cho 5
+) n chia hết cho 5 => n có chữ số tận cùng = 0 hoặc 5
+) n-1 chia hết cho 5 => n có chữ số tận cùng = 0 hoặc 5 => n có chữ số tận cùng là 1 và 6
Có : n(n-1) chia hết cho 5 có chữ số tận cùng là 0;1;5;6 (2)
Từ (1)(2) ta có chữ số tận cùng của n là 0 ; 6
A = 5+ 52+ ...+ 596
=> 5A = 52+ 53+...+ 597
=> 5A- A = ( 52+ 53+ ...+ 597) - ( 5+ 52+...+ 596)
=> 4A= 597- 5
=> A= ( 597 - 5)/ 4
Vì 597 có chữ số tận cùng là 5 nên 597- 5 có chữ số tạn cùng là (......5)- 5 = 0
=>A= ( 597-5 )/ 4= (......0)/4 = (.....0)
Vậy A có chữ số tận cùng là 0
B, nếu 6n+3:3n+6
=3.(2n+1):3.(n+2)
=2n+1:n+2
=(n+2).2-3:n+2
=3:n+2
Ư(3){-1;1;-3;3}
N+2 1 -1 3 -3
N. -1 -3. 1. -5
Vậy n{-1;-3;1;-5}
Gợi ý : n^2 - 2n có chữ số tận cùng là 0 hoặc 5
Vì n chia hết cho 2 => n có chữ số tận cùng là 0;2;4;6;8
Xét từng TH và lập luận để bớt TH cần xét
Chữ số tận cùng của n là 0 hoặc 2