TÌM ĐIỀU KIỆN XÁC ĐỊNH (LỚP 8)
a) \(A=\frac{2018}{3x^2+4x-15}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A xác định \(\Leftrightarrow\hept{\begin{cases}3x\ne0\\x+1\ne0\\2-4x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\\x\ne\frac{1}{2}\end{cases}}}\)
\(A=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}-\frac{3x+1-x^2}{3x}\)
\(A=\left[\frac{\left(x+2\right)\left(x+1\right)}{3x\left(x+1\right)}+\frac{2\cdot3x}{3x\left(x+1\right)}-\frac{3\cdot3x\left(x+1\right)}{3x\left(x+1\right)}\right]\cdot\frac{x+1}{2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{x^2+3x+2+6x-9x^2-9x}{3x\left(x+1\right)}\cdot\frac{x+1}{2\cdot\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{\left(-8x^2+2\right)\left(x+1\right)}{3x\left(x+1\right)2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{2\left(1-4x^2\right)}{3x\cdot2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{2\left(1-2x\right)\left(1-2x\right)}{3x\cdot2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{1+2x}{3x}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{2x+1-3x-1+x^2}{3x}\)
\(A=\frac{x^2-x}{3x}\)
\(A=\frac{x\left(x-1\right)}{3x}\)
\(A=\frac{x-1}{3}\)
b) Thay x = 4 ta có :
\(A=\frac{4-1}{3}=\frac{3}{3}=1\)
c) Để A thuộc Z thì \(x-1⋮3\)
\(\Rightarrow x-1\in B\left(3\right)=\left\{0;3;6;...\right\}\)
\(\Rightarrow x\in\left\{1;4;7;...\right\}\)
Vậy.....
\(\sqrt{4x^2-4x+1}=0\Rightarrow\sqrt{\left(2x-1\right)^2}=0\Rightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)
Vậy ĐKCĐ: \(x\ge\frac{1}{2}\)
\(A=\frac{\sqrt{4x^2-4x+1}}{4x^2-1}=\frac{\sqrt{\left(2x-1\right)^2}}{4x^2-1}=\frac{2x-1}{\left(2x-1\right)\left(2x+1\right)}=\frac{1}{2x+1}\)
\(a,x\ne2;x\ne-2;x\ne0\)
\(b,A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\frac{6}{x+2}\)
\(=\frac{x-2\left(x+2\right)+x-2}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)
\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)
\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}\)
\(=\frac{1}{2-x}\)
\(c,\)Để A > 0 thi \(\frac{1}{2-x}>0\Leftrightarrow2-x>0\Leftrightarrow x< 2\)
BÀI 1:
a) \(ĐKXĐ:\) \(x-3\)\(\ne\)\(0\)
\(\Leftrightarrow\)\(x\)\(\ne\)\(3\)
b) \(A=\frac{x^3-3x^2+4x-1}{x-3}\)
\(=\frac{\left(x^3-3x^2\right)+\left(4x-12\right)+11}{x-3}\)
\(=\frac{x^2\left(x-3\right)+4\left(x-3\right)+11}{x-3}\)
\(=x^2+4+\frac{11}{x-3}\)
Để \(A\)có giá trị nguyên thì \(\frac{11}{x-3}\)có giá trị nguyên
hay \(x-3\)\(\notinƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Ta lập bảng sau
\(x-3\) \(-11\) \(-1\) \(1\) \(11\)
\(x\) \(-8\) \(2\) \(4\) \(14\)
Vậy....
Câu 1 :
a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)
b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)
\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)
\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)
\(\Leftrightarrow2x^2+8x+6=0\)
\(\Leftrightarrow x^2+4x+4-1=0\)
\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)
Vậy : \(x=-3\) thì P = 1.
Bài làm:
a) \(\sqrt{x^2-3x+2}=\sqrt{\left(x-1\right)\left(x-2\right)}\)
Ta xét 2 trường hợp sau:
Nếu: \(\hept{\begin{cases}x-1\ge0\\x-2\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge1\\x\ge2\end{cases}\Rightarrow}}x\ge2\)
Nếu: \(\hept{\begin{cases}x-2\le0\\x-1\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\le2\\x\le1\end{cases}\Rightarrow}x\le1\)
Vậy \(\orbr{\begin{cases}x\ge2\\x\le1\end{cases}}\)
b) \(\sqrt{2x^2+4x+5}=\sqrt{\left(x+2\right)^2+x^2+1}\)
Mà \(\left(x+2\right)^2+x^2+1>0\left(\forall x\right)\)
Vậy biểu thức xác đinh với mọi x
c) \(\sqrt{x^2+4x+5}=\sqrt{\left(x+2\right)^2+1}\)
Mà \(\left(x+2\right)^2+1>0\left(\forall x\right)\)
Vậy biểu thức xác định với mọi x
Học tốt!!!!
ĐKXĐ :
\(x^2-4\ne0\)
=> \((x-4)\left(x+4\right)\ne0\)
=> \(\hept{\begin{cases}x-4\ne0\\x+4\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne4\\x\ne-4\end{cases}}}\)
Để \(B=\frac{2018}{x^2-4}\)xác định
thì \(x^2-4\ne0\)
\(\Rightarrow x^2\ne4\)
\(\Rightarrow x\ne\pm2\)
Vậy với \(x\ne\pm2\)thì \(B=\frac{2018}{x^2-4}\)xác định
1/
\(\frac{x-1}{13}-\frac{2x-13}{15}=\frac{3x-15}{27}-\frac{4x-27}{29}\)
\(\Leftrightarrow\left(\frac{x-1}{13}-1\right)-\left(\frac{2x-13}{15}-1\right)=\left(\frac{3x-15}{27}-1\right)-\left(\frac{4x-27}{29}-1\right)\)
\(\Leftrightarrow\frac{x-14}{13}-\frac{2\left(x-14\right)}{15}=\frac{3\left(x-14\right)}{27}-\frac{4\left(x-14\right)}{29}\)
\(\Leftrightarrow\frac{x-14}{13}-\frac{2\left(x-14\right)}{15}-\frac{3\left(x-14\right)}{27}+\frac{4\left(x-14\right)}{29}=0\)
\(\Leftrightarrow\left(x-14\right)\left(\frac{1}{13}-\frac{2}{15}-\frac{3}{27}+\frac{4}{29}\right)=0\)
\(\Leftrightarrow x-14=0\)(vì 1/13 -2/15 -3/27 +4/29 khác 0)
\(\Leftrightarrow x=14\)
vậy...................
2/
\(a,ĐKXĐ:x\ne\pm2\)
\(b,A=\frac{4}{3x-6}-\frac{x}{x^2-4}\)
\(=\frac{4}{3\left(x-2\right)}-\frac{x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{4\left(x+2\right)-3x}{3\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x+8}{3\left(x-2\right)\left(x+2\right)}\)
c,với \(x\ne\pm2\)ta có \(A=\frac{x+8}{3\left(x-2\right)\left(x+2\right)}\)
với x=1 thay vào A ta có \(A=\frac{1+8}{3\left(1-2\right)\left(1+2\right)}=\frac{9}{-9}=-1\)
\(A\)xác định
\(\Leftrightarrow3x^2+4x-15\ne0\)
\(\Leftrightarrow\left(3x^2+9x\right)-\left(5x+15\right)\ne0\)
\(\Leftrightarrow3x\left(x+3\right)-5\left(x+3\right)\ne0\)
\(\Leftrightarrow\left(x+3\right)\left(3x-5\right)\ne0\)
\(\Leftrightarrow\orbr{\begin{cases}x\ne3\\x\ne\frac{5}{3}\end{cases}}\)
Vậy với \(\orbr{\begin{cases}x\ne3\\x\ne\frac{5}{3}\end{cases}}\)thì \(A\)xác định
Tham khảo nhé~