K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2018

Bạn tự vẽ hình nha !

Ta có H là trung điểm của AB . K là trung điểm của CD \(\Rightarrow\left\{{}\begin{matrix}OH\perp AB\\OK\perp CD\end{matrix}\right.\)

Theo đề bài : \(AB=CD\Rightarrow HA=HB=KC=KD\)

Xét tam giác vuông OAH và tam giác vuông OCK ta có :

\(\left\{{}\begin{matrix}OA=OC\left(=R\right)\\AH=CK\left(cmt\right)\end{matrix}\right.\Rightarrow\Delta OAH=\Delta OCK\)

\(\Rightarrow OH=OK\) ( Hai cạnh tương ứng )

Ta có : \(OH^2+HI^2=OK^2+KI^2\left(=OI^2\right)\)

\(OH=OK\Rightarrow HI=KI\left(đpcm\right)\)

11 tháng 11 2018

CẢM ƠN

11 tháng 11 2018

hghjh

21 tháng 6 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

Nối OE ta có: AB = CD

=> OH = OK (Định lí 3)

Hai tam giác vuông OEH và OEK có:

    OE là cạnh chung

    OH = OK

=> ΔOEH = ΔOEK (cạnh huyền, cạnh góc vuông)

=> EH = EK         (1). (đpcm)

17 tháng 2 2017

Ta có: OH ⊥ AB

Mà AB = CD (gt) suy ra AH = KC     (2)

Từ (1) và (2) suy ra:

EA = EH + HA = EK + KC = EC

 

Vậy EA = EC. (đpcm)

18 tháng 9 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Nối OE ta có: AB = CD

=> OH = OK (Định lí 3)

Hai tam giác vuông OEH và OEK có:

    OE là cạnh chung

    OH = OK

=> ΔOEH = ΔOEK (cạnh huyền, cạnh góc vuông)

=> EH = EK         (1). (đpcm)

b) Ta có: OH ⊥ AB

Để học tốt Toán 9 | Giải bài tập Toán 9

Mà AB = CD (gt) suy ra AH = KC     (2)

Từ (1) và (2) suy ra:

EA = EH + HA = EK + KC = EC

Vậy EA = EC. (đpcm)

27 tháng 9 2021

a, Ta có : d(O;AB) = OH 

d(O;CD) = OK 

AB = CD => OH = OK => EB = ED 

mà H ; K lần lượt là trung điểm AB và CD => EH = EK 

b, Vi OH = OK => AE = EC 

10 tháng 6 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: HA = HB (gt)

Suy ra : OH ⊥ AB (đường kính dây cung)

Lại có : KC = KD (gt)

Suy ra : OK ⊥ CD (đường kính dây cung)

Mà AB > CD (gt)

Nên OK > OH (dây lớn hơn gần tâm hơn)

Áp dụng định lí Pitago vào tam giác vuông OHM ta có :

O M 2 = O H 2 + H M 2

Suy ra :  H M 2 = O M 2 - O H 2  (1)

Áp dụng định lí Pitago vào tam giác vuông OKM ta có:

O M 2 = O K 2 + K M 2

Suy ra:  K M 2 = O M 2 - O K 2  (2)

Mà OH < OK (cmt) (3)

Từ (1), (2) và (3) suy ra: H M 2 > K M 2  hay HM > KM

25 tháng 4 2017

a)Vì HA=HB nên OH⊥AB

Vì KC=KD nên OK⊥CD

Mặt khác, AB=CD nên OH=OK (hai dây bằng nhau thì cách đều tâm).

ΔHOE=ΔKOE (cạnh huyền, cạnh góc vuông)

Suy ra EH=EK. (1)

b) Ta có AH=KC (một nửa của hai dây bằng nhau). (2)

Từ (1) và (2) suy ra EH+HA=EK+KC hay EA=EC.