K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2018

Ta có: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)

\(\Leftrightarrow\left(\left|x+y\right|\right)^2\le\left(\left|x\right|+\left|y\right|\right)^2\)

\(\Leftrightarrow x^2+2xy+y^2\le x^2+y^2+2.\left|x\right|.\left|y\right|\)

\(\Leftrightarrow2xy\le\left|2xy\right|\)( BĐT luôn đúng )

Vậy \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)

a: \(A=\left|x+1\right|+\left|y-2\right|\ge0\forall x,y\)

Dấu '=' xảy ra khi x=-1 và y=2

b: \(B=\left|x-4\right|+\left|y+6\right|\ge0\forall x,y\)

Dấu '=' xảy ra khi x=4 và y=-6

ta có \(\left|x+1\right|+\left|y-2\right|\ge0\)

\(\Leftrightarrow\left|x+1\right|+\left|y-2\right|=0\)

\(\Leftrightarrow\hept{\begin{cases}x+1=0\\y-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)

câu b tương tự

20 tháng 12 2016

A ,B đều là tổng của hai số không âm=> nhỏ nhất KHi các số hạng của nó bằng 0

a)x+1=0; y-2=0

x=-1 và y=2

b)x=4 và y=-6

19 tháng 2 2020

\(\left(n+3\right).\left(n-2\right)< 0\)

=> n+3 và n-2 khác dấu

\(th1\Leftrightarrow\orbr{\begin{cases}n+3>0\\n-2< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}n>-3\\n< 2\end{cases}\Leftrightarrow-3< n< 2\left(tm\right)}\)

\(th2\Leftrightarrow\orbr{\begin{cases}n+3< 0\\n-2>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}n< -3\\n>2\end{cases}\Leftrightarrow2< n< -3\left(vl\right)}\)

vậy với -3<n<2 thì

\(n\in\left\{-2;-1;0;1\right\}\)

19 tháng 2 2020

tm với vl là gì vậy bạn ?

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

+ Biểu diễn miền nghiệm của BPT \(x - y \le 6\)

Bước 1: Vẽ đường thẳng \(d:x - y = 6\) trên mặt phẳng tọa độ Õy

Bước 2: Lấy O(0;0) không thuộc d, ta có: \(0 - 0 = 0 \le 6\) => điểm O(0;0) thuộc miền nghiệm

=> Miền nghiệm của BPT \(x - y \le 6\) là nửa mp bờ d, chứa gốc tọa độ.

+ Tương tự, ta có miền nghiệm của BPT \(2x - y \le 2\) là nửa mp bờ \(d':2x - y = 0\), chứa gốc tọa độ.

+ Miền nghiệm của BPT \(x \ge 0\) là nửa mp bên phải Oy (tính cả trục Oy)

+ Miền nghiệm của BPT \(y \ge 0\) là nửa mp phía trên Ox (tính cả trục Ox)

Biểu diễn trên cùng một mặt phẳng tọa độ và gạch bỏ các miền không là nghiệm của từng BPT, ta được:

 

Miền nghiệm của hệ bất phương trình đã cho là miền tứ giác OABC (miền không bị gạch) với \(A(0;6),B(\frac{8}{3};\frac{{10}}{3}),C(1;0)\)

b)

Thay tọa độ các điểm \(O(0;0),A(0;6),B(\frac{8}{3};\frac{{10}}{3}),C(1;0)\) và biểu thức \(F(x;y) = 2x + 3y\) ta được:

\(\begin{array}{l}F(0;0) = 2.0 + 3.0 = 0\\F(0;6) = 2.0 + 3.6 = 18\\F(\frac{8}{3};\frac{{10}}{3}) = 2.\frac{8}{3} + 3.\frac{{10}}{3} = \frac{{46}}{3}\\F(1;0) = 2.1 + 3.0 = 2\end{array}\)

\( \Rightarrow \min F = 0\),  \(\max F = 18\)

Vậy trên miền D, giá trị nhỏ nhất của F bằng 0, giá trị lớn nhất của F bằng \(18\).

13 tháng 3 2022

\(A=\left(x-1\right)^2+1.\\ \left(x-1\right)^2\ge0\forall x\in R.\\ 1>0.\\ \Rightarrow\left(x-1\right)^2+1\ge1\forall x\in R.\\ \Rightarrow A\ge1.\\ \Rightarrow A_{min}=1.\)

\(B=x^2+x^4-\dfrac{1}{2}.\\ x^2+x^4\ge0\forall x\in R.\\ \Leftrightarrow x^2+x^4-\dfrac{1}{2}\ge\dfrac{-1}{2}\forall x\in R.\\ \Rightarrow B\ge\dfrac{-1}{2}.\\ \Rightarrow B_{min}=\dfrac{-1}{2}.\)

\(D=\dfrac{2}{\left(x-1\right)^2}+1.\\ \left(x-1\right)^2\ge0\forall x\in R.\\ \Leftrightarrow\dfrac{2}{\left(x-1\right)^2}\ge0.\\ \Leftrightarrow\dfrac{2}{\left(x-1\right)^2}+1\ge1\forall x\in R.\\ \Rightarrow D\ge1.\\ \Rightarrow D_{min}=1.\)

15 tháng 3 2022

Mình cảm ơn