K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2018

tA CÓ: y = 2xy

=> 2x = 1

=> x = 1/2

Theo bài: x = x^2 + y^2

=> 1/2 = (1/2)^2 + y^2

=> y^2 = (1/2)^2 - 1/2 

=> y^2 = -1/4 ( vô lý  vì y^2 lớn hơn hoặc bằng 0 )

Vậy: không tìm được giá trị của x;y thỏa mãn bài

6 tháng 11 2018

Ta có : x + y = x2 + y2 + 2xy 

<=> x + y = (x + y)2

<=> \(\frac{\left(x+y\right)^2}{x+y}=1\)

<=> x + y = 1

25 tháng 9 2018

1 tháng 6 2018

Ta có: Bài tập: Phép nhân các phân thức đại số | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập: Phép nhân các phân thức đại số | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập: Phép nhân các phân thức đại số | Lý thuyết và Bài tập Toán 8 có đáp án

Với x= 14 và y= -15, ta có:

Bài tập: Phép nhân các phân thức đại số | Lý thuyết và Bài tập Toán 8 có đáp án

24 tháng 4 2018

Ta có:

Bài tập tổng hợp chương 2 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập tổng hợp chương 2 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Với x= 14 và y= -15 , ta có: Bài tập tổng hợp chương 2 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

24 tháng 7 2018

Theo tao mày nên học lại hệ thức lượng

23 tháng 5 2017

Vậy nghiệm của hệ phương trình là (x; y) = (0; 0)

NV
22 tháng 12 2020

\(P=\dfrac{x^2-6xy+6y^2}{x^2-2xy+y^2}=\dfrac{-3\left(x^2-2xy+y^2\right)+4x^2-12xy+9y^2}{x^2-2xy+y^2}\)

\(=-3+\left(\dfrac{2x-3y}{x-y}\right)^2\ge-3\)

\(P_{min}=-3\) khi \(2x=3y\)

11 tháng 3 2023

\(x^2+4y^2=x^2y^2-2xy\)

\(\Rightarrow x^2+4y^2+4xy=x^2y^2+2xy+1-1\)

\(\Rightarrow\left(x+2y\right)^2=\left(xy+1\right)^2-1\)

\(\Rightarrow\left(xy+1\right)^2-\left(x+2y\right)^2=1\)

\(\Rightarrow\left(xy-x-2y+1\right)\left(xy+x+2y+1\right)=1\)

Vì x,y là các số nguyên nên \(\left(xy-x-2y+1\right),\left(xy+x+2y+1\right)\) là các ước số của 1. Do đó ta có 2 trường hợp:

TH1: \(\left\{{}\begin{matrix}xy-x-2y+1=1\\xy+x+2y+1=1\left(1\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-xy+x+2y-1=-1\\xy+x+2y+1=1\end{matrix}\right.\)

\(\Rightarrow2\left(x+2y\right)=0\Rightarrow x=-2y\)

Thay vào (1) ta được:

\(-2y^2+1=1\Leftrightarrow y=0\Rightarrow x=0\)

TH2: \(\left\{{}\begin{matrix}xy-x-2y+1=-1\\xy+x+2y+1=-1\left(1\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-xy+x+2y-1=1\\xy+x+2y+1=-1\end{matrix}\right.\)

\(\Rightarrow2\left(x+2y\right)=0\Rightarrow x=-2y\)

Thay vào (1) ta được:

\(-2y^2+1=-1\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)

\(y=1\Rightarrow x=-2;y=-1\Rightarrow x=2\)

Vậy các cặp số nguyên (x;y) thỏa điều kiện ở đề bài là \(\left(0;0\right),\left(2;-1\right)\left(-2;1\right)\)

 

 

9 tháng 3 2018

a) Quy đồng mẫu thức và sử dụng hằng đẳng thức rồi rút gọn thu được x + 1 2 ( x − 1 )  

b) Tương tự a) thu được 2 2 − y

\(x^2+2y^2+2xy-14y+49=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(y-7\right)^2=0\)

Dấu '=' xảy ra khi y=7 và x=-7

12 tháng 9 2021

Không tắt mấy bước trên được không í ạ