K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2018

tA CÓ: y = 2xy

=> 2x = 1

=> x = 1/2

Theo bài: x = x^2 + y^2

=> 1/2 = (1/2)^2 + y^2

=> y^2 = (1/2)^2 - 1/2 

=> y^2 = -1/4 ( vô lý  vì y^2 lớn hơn hoặc bằng 0 )

Vậy: không tìm được giá trị của x;y thỏa mãn bài

6 tháng 11 2018

Ta có : x + y = x2 + y2 + 2xy 

<=> x + y = (x + y)2

<=> \(\frac{\left(x+y\right)^2}{x+y}=1\)

<=> x + y = 1

x2+2xy+y2=9

=>(x2+xy)+(xy+y2)=9

=>x(x+y)+y(x+y)=9

=>(x+y)(x+y)=3.3

=>x+y=3

x2-2xy+y2=1

=>(x2-xy)+(y2-xy)=1

=>x(x-y)+y(y-x)=1

=>x(x-y)-y(x-y)=1

=>(x-y)(x-y)=1.1

=>x-y=1

x+y+x-y=3+1

=>2x=4

=>x=2

=>y=2-1

=>y=1

vậy x=2 và y=1

17 tháng 3 2019

a, (3x2-2xy+y2) + (x2-xy+2y2) - (4x2-y2)

= 3x2-2xy+y2+x2-xy+2y2-4x2+y2

= 4y2-3xy

b, = x2-y2+2xy-x2-xy-2y2+4xy-1

= -3y2+5xy

c, M=5xy+x2-7y2+(2xy-4y)2 = 5xy+x2-7y2+4x2y2-16xy2+16y2 = 5xy+x2+9y2+4x2y2-16xy2

26 tháng 10 2016

x(x-y)-y(x-y)+5

(x-y)(x-y)+5

B=30

tim x,y là sao

23 tháng 8 2016

\(x^3-y^2-2xy=y^3+y^2+100.\)

\(\Leftrightarrow\left(x^3-y^2-2xy\right)-\left(y^3+y^2\right)=100\)

\(\Leftrightarrow x^3-y^2-2xy-y^3-y^2=100\)

\(\Leftrightarrow x^3-2y^2-2xy-y^3=100\)

19 tháng 3 2017

Nhân phân phối là ra thôi

a)

\(VT=\left(x-1\right)\left(x+1\right)=x.x+x.1-1.x+\left(-1\right).1\)

\(=\left(x^2-1\right)+\left(x-x\right)=x^2-1+0=x^2-1=VP\Rightarrow dccm\)

c) thay vì c/m A=B ta chứng Minh B=A

\(VP=\left(x+1\right)\left(x^2-x+1\right)=\left(x^3-x^2+x\right)+\left(x^2-x+1\right)\)

\(=\left(x^3+1\right)+\left(-x^2+x^2\right)+\left(x-x\right)=x^3+1+0+0=x^3+1=VT\Rightarrow VT=VP\Rightarrow dpcm\)\(=x^3+1+0+0=x^3+1=VT\Rightarrow VT=VP\Rightarrow dpcm\)

10 tháng 1 2018

c.xy2 + 2xy – 243y + x = 0 (1) 
Giải: 
Từ (1) ta có x= 243y/(y+1)^2 
Vì x, y R+ => 243y chia hết cho (y + 1)^2 
Mà (y; y + 1) = 1, nên => 243 chia hết cho (y + 1)^2 
Mà 243 = 3^5 => 243 chia hết cho 3^2 , 9^2 và 1^2 (Vì (y + 1)^2 > 1^2) 
=> (y + 1)^2 = 3^2 => y = 2 => x = 54. 
Hoặc (y + 1)^2 = 9^2 => y = 8 => x = 24. 
Vậy nghiệm nguyên of PT là (54;2); (24;8). 

6 tháng 11 2019

a. Câu hỏi của gorosuke - Toán lớp 8 - Học toán với OnlineMath