K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2015

1, 

a, Ta có: A = 2 + 22 + 23 +.......+ 210

= ( 2 + 22 ) + ( 23 + 24 ) +...... + ( 29 + 210 )

= 6 + 23 . ( 2 + 22 ) +... + 29 . ( 2 + 22 )

= 6 + 23 . 6 + ......... + 29 . 6

= 6 . ( 2 + 22 + 23 +......+ 29 ) chia hết cho 3 ( Vì 6 chia hết cho 3, nên 6k chia hết cho 3 )

=>   A chia hết  cho 3

b, Tương tự ta làm tiếp với ý b

5 tháng 12 2021

a) 4 ⋮ x ⇒ x ∈ Ư(4)

Ư(4) = {1;2;4}

⇒ x = {1;2;4}

b) -13 ⋮ (x+2) ⇒ x + 2 ∈ Ư(-13)

Ư(-13) = {1,-1,-13,13}

⇒ x = {-1,-3,-16;11}

5 tháng 12 2021

Tìm x à bạn?

29 tháng 10 2018

B ko chia hết cho 7 nha.

19 tháng 10 2023

B = 2 + 2² + 2³ + 2⁴ + ... + 2⁹⁹ + 2¹⁰⁰

= 2 + (2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷) + ... + (2⁹⁸ + 2⁹⁹ + 2¹⁰⁰)

= 2 + 2².(1 + 2 + 2²) + 2⁵.(1 + 2 + 2²) + ... + 2⁹⁸.(1 + 2 + 2²)

= 2 + 2².7 + 2⁵.7 + ... + 2⁹⁸.7

= 2 + 7.(2² + 2⁵ + ... + 2⁹⁸)

Ta có:

2 không chia hết cho 7

7.(2² + 2⁵ + ... + 2⁹⁸) ⋮ 7

Vậy B không chia hết cho 7

19 tháng 10 2023

Dãy số B được tạo thành bằng cách cộng các lũy thừa của số 2 từ 2^1 đến 2^100. Ta có thể viết B như sau:

B = 2^1 + 2^2 + 2^3 + … + 2^99 + 2^100

Chúng ta có thể nhận thấy rằng mỗi số trong dãy B đều chia hết cho 2. Điều này có nghĩa là mỗi số trong dãy B đều có dạng 2^n, với n là một số nguyên không âm.

Nếu chúng ta xem xét các số trong dãy B theo modulo 7 (lấy phần dư khi chia cho 7), chúng ta sẽ thấy một chu kỳ lặp lại. Cụ thể, chu kỳ lặp lại này có độ dài là 6 và gồm các giá trị: 2, 4, 1, 2, 4, 1, …

Vì vậy, để tính tổng của dãy B, chúng ta có thể chia tổng số lũy thừa của 2 (tức là 100) cho 6, lấy phần dư và tìm giá trị tương ứng trong chu kỳ lặp lại. Trong trường hợp này, 100 chia cho 6 dư 4, vì vậy chúng ta sẽ lấy giá trị thứ 4 trong chu kỳ lặp lại, tức là 2.

Vậy, B khi chia cho 7 sẽ có phần dư là 2. Điều này có nghĩa là B không chia hết cho 7.

22 tháng 9 2017

C/MINH:

a.106 - 57 chia hết cho 59

Giải

ta có \(10^6-5^7=\left(2\cdot5\right)^6-5^7\)\(=2^6\cdot5^6-5^7=5^6\cdot\left(2^6-5\right)=5^6\cdot59⋮59\)

Số lượng số có ba chữ số là:

   (999-100) : 1 + 1 = 900 (số)

Để có những số thỏa mãn điều kiện chia hết cho 2 nhưng không chia hết cho 5 => cần những số có đuôi là 2,4,6,8

Số lượng số có ba chữ số chia hết cho 2 là:

    (998-100) : 2 + 1 = 450 (số)

Từ 100-999 có số lượng số tận cùng là 0 là:

     (990-100) : 10 + 1 = 90 (số)

Số lượng số có 3 chữ số chia hết cho 2 nhưng không chia hết cho 5 là:

     450 - 90 = 360 (số)

Vậy có 360 số thỏa mãn điều kiện đề bài.