Tính tổng
\(M=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)...\left(\frac{1}{100}-1\right)\left(\frac{1}{121}-1\right)\)
\(S=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{99}\)
\(Q=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2013.2015}\)
\(M=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right).....\left(\frac{1}{100}-1\right)\left(\frac{1}{121}-1\right)=\frac{-3}{4}.\frac{-8}{9}.....\frac{-99}{100}.\frac{-120}{121}\)
\(M=\frac{-1.3}{2.2}.\frac{-2.4}{3.3}.....\frac{-9.11}{10.10}.\frac{-10.12}{11.11}=\frac{-1}{2}.\frac{-12}{11}=\frac{12}{22}=\frac{6}{11}\)
\(S=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{99}\)
\(S=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{9.11}\right)\)
\(S=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{9}-\frac{1}{11}\right)\)
\(S=\frac{1}{2}\left(1-\frac{1}{11}\right)\)
\(S=\frac{5}{11}\)
\(Q=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2013.2015}\)
\(Q=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)\)
\(Q=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(Q=\frac{1}{2}\left(1-\frac{1}{2015}\right)\)
\(Q=\frac{1007}{2015}\)
~ Đấng Ed :) ~