K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2018

Ta có: 25-8(x-2016)2=(y-1)2

=>y-1\(\le\)5

Xét TH:

x=2017

=>25-8(2017-2016)2=25-8=17(ko là số chính phương)

TH:x>2017 thì (y-1)2 là số âm

=>x chỉ có thể=2016

=>25-8.0=25=52

=>y-1=5=>y=5+1=6

Từ (1) và (2) suy ra x=2016;y=6

2 tháng 11 2018

\(25-8\left(x-2016\right)^2=\left(y-1\right)^2\)

Ta thấy (y - 1)2 \(\in\) N với mọi y nên 8(x - 2016)2 \(\le\) 25 \(\Leftrightarrow\) (x - 2016)2 < 4. Mà (x - 2016)2 là số chính phương nên (x - 2016)2 = 0 hoặc (x - 2016)2 = 1. Xét 2 trường hợp:

+ TH1: \(\left(x-2016\right)^2=1\Leftrightarrow\orbr{\begin{cases}x=2017\\x=2015\end{cases}}\). Khi đó (y - 1)2 = 24, loại.

+ TH2: \(\left(x-2016\right)^2=0\Leftrightarrow x=2016\). Khi đó (y - 1)2 = 25 \(\Leftrightarrow\orbr{\begin{cases}y=6\\y=-4\end{cases}}\). Loại trường hợp y = -4, ta chọn y = 6.

Vậy x = 2016, y = 6..

3 tháng 11 2018

\(25-8\left(x-2016^2\right)=\left(y-1\right)^2.\)

\(Nx:\)\(8\left(x-2016\right)^2\ge0;\left(y-1\right)^2\ge0\)

\(\Rightarrow VT=\left(y-1\right)^2\Leftrightarrow8\left(x-2016\right)^2\le25\Rightarrow\left(x-2016\right)^2\le\frac{25}{8}\Rightarrow\left(x-2016\right)^2\le3\)

Mà \(\left(x-2016\right)^2\)là số chính phương \(\Rightarrow\orbr{\begin{cases}\left(x-2016\right)^2=1\\\left(x-2016\right)^2=0\end{cases}}\)

\(\left(x-2016\right)^2=1\Leftrightarrow\orbr{\begin{cases}x-2016=-1\Leftrightarrow x=2015\\x-2016=1\Leftrightarrow x=2017\end{cases}}\)

\(\left(x-2016\right)^2=0\Leftrightarrow x-2016=0\Leftrightarrow x=2016\)

\(Th1\left(x=2015;x=2017\right)\)

\(25-8=\left(y-1\right)^2\Leftrightarrow\left(y-1\right)^2=17\Leftrightarrow y-1=\sqrt{17}\Leftrightarrow y=\sqrt{17}+1\left(loại\right)\)

\(Th2\left(x=2016\right)\)

\(25-0=\left(y-1\right)^2\Leftrightarrow\left(y-1\right)=5\Leftrightarrow y=6\)

Vậy x = 2016 và y = 6