Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phương trình bậc hai với hai biến x và y. Ta có thể giải nó bằng cách đặt (y = 5\cos{\theta}) (vì (|y| \leq 5)), từ đó suy ra (x = 2016 + \frac{5}{2}\tan{\theta}). Vì (x, y \in Z) nên (\tan{\theta}) phải là một số hữu tỉ. Ta có thể tìm các giá trị của (\theta) sao cho (\tan{\theta}) là một số hữu tỉ, từ đó suy ra các giá trị tương ứng của (x) và (y).
Cách nhanh nhất để giải bài này là dùng phương pháp chặn em nhé.
Phương pháp chặn là giới hạn các giá trị của biến kết hợp điều kiện đề bài để tìm biến. Em tham khảo cách này của cô xem.
25 - y2 = 8( \(x\) - 2015)2
ta có: ( \(x-2015\))2 ≥ 0 ∀ \(x\) (1)
Mặt khác ta có: y2 ≥ 0 ∀ y ⇒ - y2 ≤ 0 ∀ y ⇒ 25 - y2 ≤ 25 ∀ y
⇒ 25 - y2 = 8(\(x-2015\))2 ≤ 25 ∀ \(x,y\)
⇒ (\(x-2015\))2 ≤ \(\dfrac{25}{8}\) = 3,125 ∀ \(x\) (2)
Kết hợp (1) và (2) ta có: 0 ≤ (\(x-2015\))2 ≤ 3,125
vì \(x\in\) Z nên ⇒ (\(x-2015\))2 \(\in\) Z
⇒ (\(x-2015\))2 \(\in\) {0; 1; 2; 3}
th1:(\(x-2015\) )2= 0 ⇒ \(x\) = 2015; ⇒ 25 - y2 = 0⇒ y = +-5
th2:(\(x-2015\))2 = 1⇒ 25 - y2 = 8 ⇒ y2 = 25 - 8 ⇒ y = +- \(\sqrt{17}\) ( loại)
th3: (\(x-2015\))2 = 2 ⇒ \(\left[{}\begin{matrix}x=\sqrt{2}+2015\left(ktm\right)\\x=-\sqrt{2}+2015\left(ktm\right)\end{matrix}\right.\)
th4: (\(x-2015\))2 = 3 ⇒ \(\left[{}\begin{matrix}x=\sqrt{3}+2015\left(ktm\right)\\x=-\sqrt{3}+2015\left(ktm\right)\end{matrix}\right.\)
Vậy (\(x,y\)) = ( 2015; -5); ( 2015; 5) là giá trị thỏa mãn đề bài
\(25-8\left(x-2016^2\right)=\left(y-1\right)^2.\)
\(Nx:\)\(8\left(x-2016\right)^2\ge0;\left(y-1\right)^2\ge0\)
\(\Rightarrow VT=\left(y-1\right)^2\Leftrightarrow8\left(x-2016\right)^2\le25\Rightarrow\left(x-2016\right)^2\le\frac{25}{8}\Rightarrow\left(x-2016\right)^2\le3\)
Mà \(\left(x-2016\right)^2\)là số chính phương \(\Rightarrow\orbr{\begin{cases}\left(x-2016\right)^2=1\\\left(x-2016\right)^2=0\end{cases}}\)
\(\left(x-2016\right)^2=1\Leftrightarrow\orbr{\begin{cases}x-2016=-1\Leftrightarrow x=2015\\x-2016=1\Leftrightarrow x=2017\end{cases}}\)
\(\left(x-2016\right)^2=0\Leftrightarrow x-2016=0\Leftrightarrow x=2016\)
\(Th1\left(x=2015;x=2017\right)\)
\(25-8=\left(y-1\right)^2\Leftrightarrow\left(y-1\right)^2=17\Leftrightarrow y-1=\sqrt{17}\Leftrightarrow y=\sqrt{17}+1\left(loại\right)\)
\(Th2\left(x=2016\right)\)
\(25-0=\left(y-1\right)^2\Leftrightarrow\left(y-1\right)=5\Leftrightarrow y=6\)
Vậy x = 2016 và y = 6
Ta có: 25-8(x-2016)2=(y-1)2
=>y-1\(\le\)5
Xét TH:
x=2017
=>25-8(2017-2016)2=25-8=17(ko là số chính phương)
TH:x>2017 thì (y-1)2 là số âm
=>x chỉ có thể=2016
=>25-8.0=25=52
=>y-1=5=>y=5+1=6
Từ (1) và (2) suy ra x=2016;y=6
\(25-8\left(x-2016\right)^2=\left(y-1\right)^2\)
Ta thấy (y - 1)2 \(\in\) N với mọi y nên 8(x - 2016)2 \(\le\) 25 \(\Leftrightarrow\) (x - 2016)2 < 4. Mà (x - 2016)2 là số chính phương nên (x - 2016)2 = 0 hoặc (x - 2016)2 = 1. Xét 2 trường hợp:
+ TH1: \(\left(x-2016\right)^2=1\Leftrightarrow\orbr{\begin{cases}x=2017\\x=2015\end{cases}}\). Khi đó (y - 1)2 = 24, loại.
+ TH2: \(\left(x-2016\right)^2=0\Leftrightarrow x=2016\). Khi đó (y - 1)2 = 25 \(\Leftrightarrow\orbr{\begin{cases}y=6\\y=-4\end{cases}}\). Loại trường hợp y = -4, ta chọn y = 6.
Vậy x = 2016, y = 6..