phân tích thành nhân tử17−12√2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
17)
\(x^3-2x^2+x\\ =x\left(x^2-2x+1\right)\\ =x\left(x-1\right)^2\)
18)
\(3\left(x+4\right)-x^2-4x\\ =3\left(x+4\right)-x\left(x+4\right)\\ =\left(x+4\right)\left(3-x\right)\)
19)
\(x^2+5x-6\\ =x^2+6x-x-6\\ =x\left(x+6\right)-\left(x+6\right)\\ =\left(x+6\right)\left(x-1\right)\)
20)
\(x^2+x-20\\ =x^2+5x-4x-20\\ =x\left(x+5\right)-4\left(x+5\right)\\ =\left(x+5\right)\left(x-4\right)\)
\(17,x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\)
\(18,3\left(x+4\right)-x^2-4x=3\left(x+4\right)-x\left(x+4\right)=\left(x+4\right)\left(3-x\right)\)
\(19,x^2+5x-6=x^2-x+6x-6=x\left(x-1\right)+6\left(x-1\right)=\left(x-1\right)\left(x+6\right)\)
\(20,x^2+x-20=x^2-4x+5x-20=x\left(x-4\right)+5\left(x-4\right)=\left(x-4\right)\left(x+5\right)\)
Ta nhắc lại: Phương trình bậc hai phân tích được thành nhân tử khi và chỉ khi nó tồn tại nghiệm.
Ta thấy: `x^2-4x+12=(x-2)^2+8>=8>0AAx` nên ta không thể phân tích nhân tử cho phương trình này.
x² - 4x - 12
= x² + 2x - 6x - 12
= (x² + 2x) - (6x + 12)
= x(x + 2) - 6(x + 2)
= (x + 2)(x - 6)
\(x^2-8x+12=\left(x^2-6x\right)-\left(2x-12\right)=x\left(x-6\right)-2\left(x-6\right)=\left(x-2\right)\left(x-6\right)\)
\(x^2+7x+12=x\left(x+3\right)+4\left(x+3\right)=\left(x+3\right)\left(x+4\right)\)
\(=x^2+3x+4x+12\)
\(=x\left(x+3\right)+4\left(x+3\right)\)
\(=\left(x+3\right)\left(x+4\right)\)
\(x^2-x-12\\ =x^2-4x+3x-12\\ =x\left(x-4\right)+3\left(x-4\right)\\ =\left(x-4\right)\left(x+3\right)\)
\(3x^2-6xy+9y^2-12\)
\(=3\cdot x^2-3\cdot2xy+3\cdot3y^2-3\cdot4\)
\(=3\cdot\left(x^2-2xy+3y^2-4\right)\)
=(x^2+x)^2+4(x^2+x)-12
=(x^2+x+6)(x^2+x-2)
=(x^2+x+6)(x+2)(x-1)
\(17-12\sqrt{2}=9-2.3.2\sqrt{2}+8\)
\(=\left(3-2\sqrt{2}\right)^2\)
Làm lấy lệ ^^