Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta nhắc lại: Phương trình bậc hai phân tích được thành nhân tử khi và chỉ khi nó tồn tại nghiệm.
Ta thấy: `x^2-4x+12=(x-2)^2+8>=8>0AAx` nên ta không thể phân tích nhân tử cho phương trình này.
x² - 4x - 12
= x² + 2x - 6x - 12
= (x² + 2x) - (6x + 12)
= x(x + 2) - 6(x + 2)
= (x + 2)(x - 6)
=(x^2+x)^2+4(x^2+x)-12
=(x^2+x+6)(x^2+x-2)
=(x^2+x+6)(x+2)(x-1)
\(x^3+\left(2m+5\right)x^2+\left(2m+6\right)x-4m-12=\left(x^3-x^2\right)+\left[\left(2m+6\right)x^2-\left(2m+6\right)x\right]+\left[\left(4m+12\right)x-\left(4m+12\right)\right]=\left[x^2+\left(2m+6\right)x+\left(4m+12\right)\right]\left(x-1\right)\)
\(12-\sqrt{x}-x\)
ĐK : x ≥ 0
\(=12-4\sqrt{x}+3\sqrt{x}-x\)
\(=4\left(3-\sqrt{x}\right)+\sqrt{x}\left(3-\sqrt{x}\right)\)
\(=\left(3-\sqrt{x}\right)\left(4+\sqrt{x}\right)\)
\(12-\sqrt{x}-x=\left(12-4\sqrt{x}\right)+\left(3\sqrt{x}-x\right)\)
\(=4\left(3-\sqrt{x}\right)+\sqrt{x}\left(3-\sqrt{x}\right)\)
\(=\left(4+\sqrt{x}\right)\left(3-\sqrt{x}\right)\)
\(17-12\sqrt{2}=9-2.3.2\sqrt{2}+8\)
\(=\left(3-2\sqrt{2}\right)^2\)
Làm lấy lệ ^^