Cho \(\Delta ABC\) có AB>AC. Vẽ AD vuông góc với BC. Lấy điểm E là điểm tùy ý trên đoạn AD.
Chứng minh rằng: \(AB^2-AC^2=EB^2-EC^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trên AB lấy H sao cho AC = AH
xét tam giác AEC và tam giác AEH có : AE chung
^CAE = ^HAE do AE Là pg của ^BAC (Gt)
=> tam giác AEC = tam giác AEH (c-g-c)
=> EC = EH
xét tam giác EHB có HB > BE - EH
=> HB > BE - EC
có HB = AB - AH mà AH = AC (cv) => HB = AB - AC
=> AB - AC > BE - EC
a) Xét \(\Delta ABE\) và \(\Delta AFE:\)
\(AB=AF\left(gt\right).\)
\(\widehat{BAE}=\widehat{FAE}\) (AD là phân giác \(\widehat{A}).\)
AE chung.
\(\Rightarrow\Delta ABE=\Delta AFE\left(c-g-c\right).\)
b) Xét \(\Delta BEC:\)
\(BE+EC>BC.\left(1\right)\)
Xét \(\Delta ABC:\)
\(AC>AB\left(gt\right).\)
\(\Rightarrow AC-AB< BC.\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow\) \(BE+EC>AC-AB.\)
a) Xét t/giác ABC vuông tại A có góc B = 600 => góc C = 900 - 600 = 300
Ta có: \(\widehat{B1}=\widehat{B2}=\widehat{\frac{B}{2}}=\frac{60^0}{2}=30^0\)
=> \(\widehat{C}=\widehat{B2}\) = >t/giác BEC cân tại E => EB = EC
b) Trên tia đối của tia AB lấy điểm M sao cho AM = AB
Xét t/giác ABC và t/giác AMC
có: AB = AM
\(\widehat{BAC}=\widehat{MAC}=90^0\) (gt)
AC : chung
=> t/giác ABC = t/giác AMC (c.g.c)
=> BC = CM (2 cạnh t/ứng)
=> t/giác ACM cân tại C có \(\widehat{B}=60^0\)
=> t/giác ACM đều
=> BC = CM = BM
Mà BM = AB + AM = 2AB (AB = AM)
=> BC = 2AB => AB = 1/2BC
c) Xét t/giác ABC vuông tại A có AN là đường trung tuyến
=> AM = BN = NC = 1/2BC
=> t/giác ANC cân tại N
=> AN = NC