K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2022

- Câu b) chứng minh được thì câu a) mới chứng minh được:

b) *Trên tia đối của tia MA, lấy điểm O sao cho MA=MO.

Xét ▲ABM và ▲OCM có:

AM=OM (gt)

\(\widehat{AMB}=\widehat{OMC}\)(đối đỉnh)
BM=CM(M là trung điểm BC)

=>▲ABM=▲OCM (c-g-c)

=>AB=OC (2 cạnh tương ứng).

\(\widehat{ABM}=\widehat{OCM}\)(2 góc tương ứng).

- Mà AB<AC (gt)

=>AC>OC

Xét ▲ACO có:

AC>OC (cmt)

=>\(\widehat{AOC}>\widehat{OAC}\)(quan hệ giữa cạnh và góc đối diện trong tam giác).

\(\widehat{AOC}=\widehat{OAB}\)(cmt)

=>\(\widehat{OAB}>\widehat{OAC}\).

a) - Xét tam giác ABC có:

AB<AC (gt)

=>\(\widehat{ACB}< \widehat{ABC}\)(quan hệ giữa cạnh và góc đối diện trong tam giác).

- Ta có: \(\widehat{AMB}+\widehat{ABM}+\widehat{BAM}=180^0\)(tổng 3 góc trong ▲ABM)

\(\widehat{AMC}+\widehat{ACM}+\widehat{CAM}=180^0\)(tổng 3 góc trong ▲ACM)

Mà \(\widehat{BAM}>\widehat{CAM}\)(cmt) ; \(\widehat{ABM}>\widehat{ACM}\)(cmt)

=>\(\widehat{AMB}< \widehat{AMC}\)

25 tháng 1 2022

cảm ơn bạn nha

 

18 tháng 12 2023

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b: Ta có: ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

=>AM\(\perp\)BC

c: Sửa đề: Trên tia đối của tia MA lấy D sao cho MA=MD

Xét ΔMAB vuông tại M và ΔMDC vuông tại M có

MA=MD

MB=MC

Do đó: ΔMAB=ΔMDC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

19 tháng 12 2023

vẻ hình đc k

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

Do đó: ΔAEM=ΔAFM

=>AE=AF

c: Xét ΔAMF vuông tại F và ΔADF vuông tại F có

AF chung

MF=DF

Do đó: ΔAMF=ΔADF

=>góc MAF=góc DAF

=>góc DAF=góc BAM

2 tháng 2 2021

a. Xét ΔAMB và ΔAMC có

AM chung

MB=MC ( do M là trung điểm BC )

AB=AC

⇒ ΔAMB = ΔAMC (ccc)

b. Xét ΔABC có AB=AC

⇒ ΔABC cân AMà M là trung điểm BC 

⇒AM là đường trung tuyến

⇒ AM đồng thời là đường phân giác

⇒ ∠BAM=∠CAM

Mà ME//AC ⇒ ∠EMA=∠CAM ( so le trong )

⇒∠BAM=∠EMA

c. Do ΔABC cân A và AE=AF

⇒EB=FC và ∠EBM=∠FCM

Xét ΔEBM và ΔFCM có

BM=MC

EB=FC

∠EBM=∠FCM

 

⇒ ΔEBM = ΔFCM (cgc)

b: Ta có: ΔBAC cân tại A

mà AM là đường phân giác

nên M là trung điểm của BC

a) Xét ΔABM và ΔDCM có 

MB=MC(M là trung điểm của BC)

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MA=MD(gt)

Do đó: ΔABM=ΔDCM(c-g-c)

b) Ta có: ΔABM=ΔDCM(cmt)

nên AB=CD(Hai cạnh tương ứng)

mà AB<AC(gt)

nên CD<AC

Xét ΔACD có 

CD<AC(cmt)

mà góc đối diện với cạnh CD là \(\widehat{CAD}\)

và góc đối diện với cạnh AC là \(\widehat{ADC}\)

nên \(\widehat{CAD}< \widehat{ADC}\)(Định lí quan hệ giữa góc và cạnh đối diện trong tam giác)

\(\Leftrightarrow\widehat{CAM}< \widehat{MDC}\)

mà \(\widehat{BAM}=\widehat{MDC}\)(ΔABM=ΔDCM)

nên \(\widehat{BAM}>\widehat{CAM}\)(đpcm)

loading...  loading...