K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2018

Ta có : a2 + b2 - 2ab + 1

= a2 - 2ab + b2 + 1

= (a - b)2 + 1

mà (a - b)2 > 0 \(\forall\) a,b

=> (a - b)2 + 1 > 0

Vậy a2 + b2 - 2ab + 1 > 0

12 tháng 1 2022

đề sai r bạn

12 tháng 1 2022

chuẩn cm nó luôn

9 tháng 6 2021

1) 52005 +52003 = 52003(52+1)=52003(25+1) = 52003.26 

Mà 26 chia hết cho 13 => ...

2)a2 + b2 + 1 ≥ ab + a + b <=> 2a2+2b2+2 ≥ 2ab + 2a +2b  (*nhân cả hai vế với  2*)

<=> 2a2-2ab+2b2 +2 -2a -2b ≥0  (*chuyển vế phải sang vế trái và đổi dấu*)

<=> (a2-2ab+b2)+(a2-2a+1)+(b2-2b+1)≥0  

<=> (a-b)2+(a-1)2+(b-1)2≥0 

=> Bất đẳng thức đúng 

=> đpcm

3) Ta có a+b+c=0

<=> a+b = -c

<=> (a+b)3=(-c)3

<=> a3+3a2b+3ab2+b3= -c 

 

<=> a3+b3+c3= -3a2b -3ab  (*chuyển vế*)

<=> a3+b3+c3= -3ab(a+b) = -3ab(-c)=3abc (*do a+b = -c*)

3 tháng 6 2018

Ta có: a - b 2 ≥ 0 a 2 + b 2 - 2 a b ≥ 0

NV
2 tháng 4 2023

BĐT cần chứng minh tương đương:

\(a^2+b^2+c^2\ge2ab-2bc+2ca\)

\(\Leftrightarrow a^2+b^2+c^2+2bc-2a\left(b+c\right)\ge0\)

\(\Leftrightarrow a^2+\left(b+c\right)^2-2a\left(b+c\right)\ge0\)

\(\Leftrightarrow\left(a-b-c\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

24 tháng 1 2019

a) Biến đổi vế trái:

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Biến đổi vế trái:

Để học tốt Toán 9 | Giải bài tập Toán 9

( v ì   a   +   b   >   0   n ê n   | a   +   b |   =   a   +   b ;   b 2   >   0 )

9 tháng 12 2021

Vì a,b,c là 3 cạnh tam giác nên \(a+b>c\Leftrightarrow ac+bc>c^2\)

CMTT: \(ab+bc>b^2;ab+ac>a^2\)

Cộng vế theo vế \(\Leftrightarrow a^2+b^2+c^2< ab+bc+ca+ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2< 2ab+2bc+2ca\\ \Leftrightarrow a^2+b^2+c^2-2ab-2bc-2ca< 0\)

 

20 tháng 4 2020

\(1.CMR:\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)

\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=1+\frac{b}{a}+\frac{a}{b}+1=\frac{a}{b}+\frac{b}{a}+2\)

Áp dụng BĐT AM-GM ta có:

\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)

\(\Rightarrow\frac{a}{b}+\frac{b}{a}+2\ge2+2=4\)

Dấu '' = '' xảy ra khi \(a=b\)

\(2.\\ a.CMR:a^2+2b^2+c^2-2ab-2bc\ge0\forall a,b,c\)

\(a^2+2b^2+c^2-2ab-2bc=a^2-2ab+b^2+c^2-2bc+b^2=\left(a-b\right)^2+\left(b-c\right)^2\ge0\forall a,b,c\)

Dấu '' = '' xảy ra khi \(a=b=c\)

\(b.CMR:a^2+b^2-4a+6b+13\ge0\forall a,b\)

\(a^2+b^2-4a+6b+13=\left(a^2-4a+4\right)+\left(b^2+6b+9\right)=\left(a-2\right)^2+\left(b+9\right)^2\ge0\forall a,b\)

Dấu '' = '' xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=-9\end{matrix}\right.\)