K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2021

Vì a,b,c là 3 cạnh tam giác nên \(a+b>c\Leftrightarrow ac+bc>c^2\)

CMTT: \(ab+bc>b^2;ab+ac>a^2\)

Cộng vế theo vế \(\Leftrightarrow a^2+b^2+c^2< ab+bc+ca+ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2< 2ab+2bc+2ca\\ \Leftrightarrow a^2+b^2+c^2-2ab-2bc-2ca< 0\)

 

16 tháng 5 2015

Ta có a > /b - c/ ; b > /a - c/ ; c> /a - b/

=> a2 > b+ c- 2bc

b2 > a2 + c2 - 2ac

c2 > a2 + b2 - 2ab

Suy ra a2 + b2 + c2 < 2(ab + bc + ca)

18 tháng 12 2018

Vì a,b,c là độ dài ba cạnh tam giác

\(\Rightarrow a^2=a.a< a\left(b+c\right)=ab+ac\)

TT\(\Rightarrow b^2< ba+bc;c^2< cb+ca\)

Cộng vế theo vế:

\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

Hay \(a^2+b^2+c^2-2ab-2bc-2ca< 0\left(\text{đ}pcm\right)\)

Câu 1. Chứng minh √7 là số vô tỉ.Câu 2.a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.Câu 4.a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: b) Cho a, b, c > 0. Chứng minh rằng: c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.Câu...
Đọc tiếp

Câu 1. Chứng minh √7 là số vô tỉ.

Câu 2.

a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)

b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)

Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.

Câu 4.

a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: 

b) Cho a, b, c > 0. Chứng minh rằng: 

c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.

Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.

Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.

Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|

Câu 9.

a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

Câu 10. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

3
22 tháng 10 2019

Câu 9.

a) Ta có: \(\left(a-1\right)^2\ge0\)(điều hiển nhiên)

\(\Leftrightarrow a^2-2a+1\ge0\)

\(\Leftrightarrow a^2+2a+1\ge4a\)

\(\Leftrightarrow\left(a+1\right)^2\ge4a\left(đpcm\right)\)

b) Áp dụng BĐT Cauchy cho 2 số không âm:

\(a+1\ge2\sqrt{a}\)

\(b+1\ge2\sqrt{b}\)

\(c+1\ge2\sqrt{c}\)

\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\sqrt{abc}=8\)(Vì abc = 1)

22 tháng 10 2019

Câu 10. 

a) Ta có: \(-\left(a-b\right)^2\le0\)(điều hiển nhiên)

\(\Leftrightarrow-a^2+2ab-b^2\le0\)

\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\)

\(\Leftrightarrow\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

Có: \(2ab\le a^2+b^2;2bc\le b^2+c^2;2ac\le a^2+c^2\)(BĐT Cauchy)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac\le3\left(a^2+b^2+c^2\right)\)

Vậy ​\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

 
phân tích đa thức thành nhân tử.3x2 + 2x – 1x3 + 6x2 + 11x + 6x4 + 2x2 – 3ab + ac +b2 + 2bc + c2a3 – b3 + c3 + 3abcbài 2 : cho phân thức : tìm điều kiện của x để A có nghĩa.Rút gọn A.Tính x để A < 1.Bài 3 : Chứng minh các bất đẳng thức :Cho a + b + c = 0 . Chứng minh rằng :  a3 + b3 + c3 = 3abc.Cho a, b, c là độ dài ba cạnh của tam giác. Chứng minh rằng : Chứng minh rằng : x5 + y5 ≥  x4y + xy4 với...
Đọc tiếp

phân tích đa thức thành nhân tử.

  1. 3x2 + 2x – 1
  2. x3 + 6x2 + 11x + 6
  3. x4 + 2x2 – 3
  4. ab + ac +b2 + 2bc + c2
  5. a3 – b3 + c3 + 3abc

bài 2 : cho phân thức : 

  1. tìm điều kiện của x để A có nghĩa.
  2. Rút gọn A.
  3. Tính x để A < 1.

Bài 3 : Chứng minh các bất đẳng thức :

  1. Cho a + b + c = 0 . Chứng minh rằng :  a3 + b3 + c3 = 3abc.
  2. Cho a, b, c là độ dài ba cạnh của tam giác. Chứng minh rằng :

 

  1. Chứng minh rằng : x5 + y5 ≥  x4y + xy4 với x, y ≠ 0 và x + y ≥ 0

Bài 4 : giải phương trình :

  1. x2 – 3x + 2 + |x – 1| = 0
  2.  
  3.  

 Bài 5 : tìm giá trị lớn nhất và nhỏ nhất (nếu có)

  1. A = x2 – 2x + 5
  2. B = -2x2 – 4x + 1.
  3. C = 

Bài 6 : tính giá trị của biểu thức.

  1. Biết a – b = 7 tính : A = a2(a + 1) – b2(b – 1) + ab – 3ab(a – b + 1)
  2. Cho ba số a, b, c khác 0 thỏa nãm đẳng thức : 

Tính : P = 

Bài 7 : Chứng minh rằng

  1. 8351634 + 8241142 chia hết cho 26.
  2. A = n3 + 6n2 – 19n – 24 chia hết cho 6.
  3. B = (10n – 9n – 1) chia hết cho 27 với n thuộc N*.

Bài 8 :

Trong cuộc đua mô tô có ba xe khởi hành cùng một lúc. Xe thứ hai trong một giờ chạy chậm hơn xe thứ nhất 15km và nhanh xe thứ ba 3km. nên đến đích chậm hơn xe thứ nhất 12 phút và sớm hơn xe thứ ba 3 phút. Không có sự dừng lại dọc đường đi. Tính vận tốc mỗi xe, quãng đường đua và thời gian mỗi xe.

đố tí ko cần giải cụ thể vì mình ko cần nhưng giải cụ thể like nhưng mình ko mún hỏi chỉ đố thui

0
5 tháng 10 2019

Có ab + bc + ca = 0

=> 2ab + 2bc + 2ca = 0

Lại có a2 + b2 + c2 = 0             (1)        

=> a2 + 2ab + b2 + 2bc + c2 + 2ca = 0

=> (a + b + c)2 = 0

=> a + b + c = 0                        (2)

Từ (1) và (2) => a = b = c (đpcm)

5 tháng 10 2019

Ta có: \(\hept{\begin{cases}a^2+b^2+c^2=0\\ab+bc+ca=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2a^2+2b^2+2c^2=0\\2ab+2bc+2ca=0\end{cases}}\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0;\forall a,b,c\\\left(b-c\right)^2\ge0;\forall a,b,c\\\left(c-a\right)^2\ge0;\forall a,b,c\end{cases}}\)\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0;\forall a,b,c\)

Do đó \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)

\(\Leftrightarrow a=b=c\left(đpcm\right)\)

5 tháng 2 2016

a b

vì tổng của 3 gốc bằng 180

nên 180>0

 

vậy thôi

Bài 1 : phân tích đa thức thành nhân tử.3x2 + 2x – 1x3 + 6x2 + 11x + 6x4 + 2x2 – 3ab + ac +b2 + 2bc + c2a3 – b3 + c3 + 3abcbài 2 : cho phân thức : tìm điều kiện của x để A có nghĩa.Rút gọn A.Tính x để A < 1.Bài 3 : Chứng minh các bất đẳng thức :Cho a + b + c = 0 . Chứng minh rằng :  a3 + b3 + c3 = 3abc.Cho a, b, c là độ dài ba cạnh của tam giác. Chứng minh rằng :Chứng minh rằng : x5 + y5 ≥  x4y +...
Đọc tiếp

Bài 1 : phân tích đa thức thành nhân tử.

  1. 3x2 + 2x – 1
  2. x3 + 6x2 + 11x + 6
  3. x4 + 2x2 – 3
  4. ab + ac +b2 + 2bc + c2
  5. a3 – b3 + c3 + 3abc

bài 2 : cho phân thức : A = \frac{x^4-2x^2+1}{x^3-3x -2}

  1. tìm điều kiện của x để A có nghĩa.
  2. Rút gọn A.
  3. Tính x để A < 1.

Bài 3 : Chứng minh các bất đẳng thức :

  1. Cho a + b + c = 0 . Chứng minh rằng :  a3 + b3 + c3 = 3abc.
  2. Cho a, b, c là độ dài ba cạnh của tam giác. Chứng minh rằng :

\frac{a}{b+c} +\frac{b}{a+c} +\frac{c}{a+b} <2

  1. Chứng minh rằng : x5 + y5 ≥  x4y + xy4 với x, y ≠ 0 và x + y ≥ 0

Bài 4 : giải phương trình :

  1. x2 – 3x + 2 + |x – 1| = 0
  2.  
  3. \frac{x+2}{x-2} -\frac{1}{x} -\frac{2}{x(x-2)} =0

 Bài 5 : tìm giá trị lớn nhất và nhỏ nhất (nếu có)

  1. A = x2 – 2x + 5
  2. B = -2x2 – 4x + 1.
  3. C = \frac{3}{-x^2+2x-4}

Bài 6 : tính giá trị của biểu thức.

  1. Biết a – b = 7 tính : A = a2(a + 1) – b2(b – 1) + ab – 3ab(a – b + 1)
  2. Cho ba số a, b, c khác 0 thỏa nãm đẳng thức : \frac{a+b-c}{c} =\frac{a+c-b}{b} =\frac{c+b-a}{c}

Tính : P = \frac{(a+b)(b+c)(a+c)}{abc}

Bài 7 : Chứng minh rằng

  1. 8351634 + 8241142 chia hết cho 26.
  2. A = n3 + 6n2 – 19n – 24 chia hết cho 6.
  3. B = (10n – 9n – 1) chia hết cho 27 với n thuộc N*.

Bài 8 :

Trong cuộc đua mô tô có ba xe khởi hành cùng một lúc. Xe thứ hai trong một giờ chạy chậm hơn xe thứ nhất 15km và nhanh xe thứ ba 3km. nên đến đích chậm hơn xe thứ nhất 12 phút và sớm hơn xe thứ ba 3 phút. Không có sự dừng lại dọc đường đi. Tính vận tốc mỗi xe, quãng đường đua và thời gian mỗi xe.

Advertisements

0

Đợi nghĩ ra cách ngắn hơn nhá :)) 

\(1)\)\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...-8x^2+8x-5\)

\(B=-7x^{15}+\left(8x^{15}-8x^{14}\right)+\left(8x^{13}-8x^{12}\right)+...+\left(8x^3-8x^2\right)+\left(8x-8\right)+3\)

\(B=-7x^{15}+8x^{14}\left(x-1\right)+8x^{12}\left(x-1\right)+...+8x^2\left(x-1\right)+8\left(x-1\right)+3\)

\(B=-7x^{15}+8\left(x-1\right)\left(x^{14}+x^{12}+...+x^2+1\right)+3\)

\(B=-7x^{15}+8\left(x-1\right)\left[x^{12}\left(x^2+1\right)+x^8\left(x^2+1\right)+...+\left(x^2+1\right)\right]+3\)

\(B=-7x^{15}+8\left(x-1\right)\left(x^2+1\right)\left(x^{12}+x^8+...+1\right)+3\)

\(B=-7x^{15}+8\left(x-1\right)\left(x^2+1\right)\left[x^8\left(x^4+1\right)+\left(x^4+1\right)\right]+3\)

\(x=7\)\(\Rightarrow\)\(x+1=8\)

\(B=-7x^{15}+\left(x+1\right)\left(x-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)+3\)

\(B=-7x^{15}+\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\)

\(B=-7x^{15}+\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)\)

\(B=-7x^{15}+\left(x^8-1\right)\left(x^8+1\right)=-7x^{15}+x^{16}-1=x^{15}\left(x-7\right)-1=-1\)

...

19 tháng 4 2018

Bài 1:

ta có: x=7 => x+ 1 =8

thay vào biểu thức B

\(\Rightarrow B=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...-\left(x+1\right)x^2+\left(x+1\right)x-5\)      \(B=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...-x^3-x^2+x^2+x-5\)

\(B=x-5\)

\(B=7-5\)

\(B=2\)

Bài 2:

bn tham khảo link dưới nha:

https://olm.vn/hoi-dap/question/982834.html

Bài 3: Bn xem lại giúp mk nha!!! ( Chỗ nếu: thì....)

5 tháng 9 2018

\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)

\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)

\(=2\)

19 tháng 9 2018

Bài  1 : Thay 8 = x + 1 vào B

 => B = x15 - ( x + 1 ) x14 + ( x + 1 ) x13 - ( x + 1 ) x12 ......+ ( x + 1 ) x - 5

         = x15 - x15 - x14 + x14 + x13 - x13 ...... - x2 + x2 + x - 5

         = x - 5

Mà x = 7

=>  B = 7 - 5 = 2

Vậy B = 1

2 ) Gọi ba số cần tìm là a; a+1; a+2

Vì tích hai số đầu nhỏ hơn tích hai số sau là 50

=> a ( a + 1 ) = ( a + 1 )  ( a + 2 )  - 50

=> a2 + a = a2 + 3a + 2 - 50

=> a = 3a - 48

=> 2a = 48

=> a = 24

Vậy 3 số phải tìm là 24; 25; 26 

Bài 3 đề bài chưa rõ nếu cái gì ? Bạn sửa lại đi, mình sẽ giải