K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2018

a,Đk: a≥0 ; a khác 4

H=\(\dfrac{\sqrt{a}+2}{\sqrt{a}+3}\) -\(\dfrac{5}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\) -\(\dfrac{1}{\sqrt{a}-2}\)

= \(\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

=\(\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

=\(\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)

=\(\dfrac{\left(\sqrt{a}-4\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

=\(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)

b, Để H<2

<=>\(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) <2

<=> \(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) -2<0

<=>\(\dfrac{\sqrt{a}-4-2\sqrt{a}+4}{\sqrt{a}-2}\) <0

<=>\(\dfrac{-\sqrt{a}}{\sqrt{a}-2}\) <0

<=>\(\left\{{}\begin{matrix}-\sqrt{a}< 0\\\sqrt{a}-2>0\end{matrix}\right.\) ( vì \(\sqrt{a}>0< =>-\sqrt{a}< 0\)

<=> a>4

vậy để H <2 khi a>4

c, Ta có a\(^2\) +3a=0

<=> a(a+3)=0

<=>a=0 hoặc a=-3(vô lí)

+ Với a=0 <=>\(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) =\(\dfrac{0-4}{0-2}\) =2

d, Để H=5

<=> \(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) =5

<=>\(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) -5=0

<=>\(\dfrac{\sqrt{a}-4-5\sqrt{a}+10}{\sqrt{a}-2}\) =0

<=>-4\(\sqrt{a}\) +6=0

<=> a=\(\dfrac{9}{4}\)

AH
Akai Haruma
Giáo viên
17 tháng 2 2021

Lời giải:ĐK: $a\geq 0; a\neq 9; a\neq 4$

a) 

\(A=\frac{2\sqrt{a}-9}{(\sqrt{a}-2)(\sqrt{a}-3)}-\frac{\sqrt{a}+3}{\sqrt{a}-2}+\frac{2\sqrt{a}+1}{\sqrt{a}-3}\)

\(\frac{2\sqrt{a}-9}{(\sqrt{a}-2)(\sqrt{a}-3)}-\frac{(\sqrt{a}+3)(\sqrt{a}-3)}{(\sqrt{a}-2)(\sqrt{a}-3)}+\frac{(2\sqrt{a}+1)(\ \sqrt{a}-2)}{(\sqrt{a}-3)(\sqrt{a}-2)}\)

\(=\frac{2\sqrt{a}-9-(a-9)+(2a-3\sqrt{a}-2)}{(\sqrt{a}-3)(\sqrt{a}-2)}=\frac{a-\sqrt{a}-2}{(\sqrt{a}-3)(\sqrt{a}-2)}=\frac{(\sqrt{a}-2)(\sqrt{a}+1)}{(\sqrt{a}-3)(\sqrt{a}-2)}=\frac{\sqrt{a}+1}{\sqrt{a}-3}\)

b) Để \(A< 1\Leftrightarrow \frac{\sqrt{a}+1}{\sqrt{a}-3}<1\Leftrightarrow 1+\frac{4}{\sqrt{a}-3}<1\)

\(\Leftrightarrow \frac{4}{\sqrt{a}-3}< 0\Leftrightarrow \sqrt{a}-3< 0\Leftrightarrow 0\leq a< 9\)

Kết hợp ĐKXĐ: suy ra $0\leq a< 9; a\neq 4$

c) Với $a$ nguyên,  \(A=1+\frac{4}{\sqrt{a}-3}\in\mathbb{Z}\Leftrightarrow 4\vdots \sqrt{a}-3\)

$\Rightarrow \sqrt{a}-3\in\left\{\pm 1; \pm 2;\pm 4\right\}$

$\Rightarrow a\in\left\{4;16; 1;25; 49\right\}$

Kết hợp ĐKXĐ suy ra $a\in\left\{16;1;25;49\right\}$

 

ĐKXĐ: \(\left\{{}\begin{matrix}a\ge0\\a\notin\left\{4;9\right\}\end{matrix}\right.\)

a) Ta có: \(A=\dfrac{2\sqrt{a}-9}{a-5\sqrt{a}+6}-\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{2\sqrt{a}+1}{3-\sqrt{a}}\)

\(=\dfrac{\left(2\sqrt{a}-9\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}-\dfrac{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}+\dfrac{\left(2\sqrt{a}+1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}-2\right)}\)

\(=\dfrac{2\sqrt{a}-9-\left(a-9\right)+2a-4\sqrt{a}+\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)

\(=\dfrac{2a-\sqrt{a}-11-a+9}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)

\(=\dfrac{a-\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)

\(=\dfrac{a-2\sqrt{a}+\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)

\(=\dfrac{\sqrt{a}\left(\sqrt{a}-2\right)+\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)

\(=\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)

\(=\dfrac{\sqrt{a}+1}{\sqrt{a}-3}\)

b) Để A<1 thì A-1<0

\(\Leftrightarrow\dfrac{\sqrt{a}+1}{\sqrt{a}-3}-1< 0\)

\(\Leftrightarrow\dfrac{\sqrt{a}+1}{\sqrt{a}-3}-\dfrac{\sqrt{a}-3}{\sqrt{a}-3}< 0\)

\(\Leftrightarrow\dfrac{\sqrt{a}+1-\sqrt{a}+3}{\sqrt{a}-3}< 0\)

\(\Leftrightarrow\dfrac{4}{\sqrt{a}-3}< 0\)

mà 4>0

nên \(\sqrt{a}-3< 0\)

\(\Leftrightarrow\sqrt{a}< 3\)

hay a<9

Kết hợp ĐKXĐ, ta được:

\(\left\{{}\begin{matrix}0\le a< 9\\a\ne4\end{matrix}\right.\)

Vậy: Để A<1 thì \(\left\{{}\begin{matrix}0\le a< 9\\a\ne4\end{matrix}\right.\)

c) Để A nguyên thì \(\sqrt{a}+1⋮\sqrt{a}-3\)

\(\Leftrightarrow\sqrt{a}-3+4⋮\sqrt{a}-3\)

mà \(\sqrt{a}-3⋮\sqrt{a}-3\)

nên \(4⋮\sqrt{a}-3\)

\(\Leftrightarrow\sqrt{a}-3\inƯ\left(4\right)\)

\(\Leftrightarrow\sqrt{a}-3\in\left\{1;-1;2;-2;4;-4\right\}\)

mà \(\sqrt{a}-3\ge-3\forall a\) thỏa mãn ĐKXĐ

nên \(\sqrt{a}-3\in\left\{1;-1;2;-2;4\right\}\)

\(\Leftrightarrow\sqrt{a}\in\left\{4;2;5;1;7\right\}\)

\(\Leftrightarrow a\in\left\{16;4;25;1;49\right\}\)

Kết hợp ĐKXĐ, ta được: \(a\in\left\{1;16;25;49\right\}\)

Vậy: Để A nguyên thì \(a\in\left\{1;16;25;49\right\}\)

1:

\(A=\sqrt{x^2+\dfrac{2x^2}{3}}=\sqrt{\dfrac{5x^2}{3}}=\left|\sqrt{\dfrac{5}{3}}x\right|=-x\sqrt{\dfrac{5}{3}}\)

2: \(=\left(\dfrac{\sqrt{100}+\sqrt{40}}{\sqrt{5}+\sqrt{2}}+\sqrt{6}\right)\cdot\dfrac{2\sqrt{5}-\sqrt{6}}{2}\)

\(=\dfrac{\left(2\sqrt{5}+\sqrt{6}\right)\left(2\sqrt{5}-\sqrt{6}\right)}{2}\)

\(=\dfrac{20-6}{2}=7\)

1 tháng 7 2021

a,bn viết đúng đề xíu nhé \(\dfrac{\sqrt{a}+2}{\sqrt{a+3}}\) sửa \(\dfrac{\sqrt{a}+2}{\sqrt{a}+3}\)

đk: \(a\ge0,a\ne4\)

=>\(P=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\dfrac{1}{\sqrt{a}-2}\)

\(=\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)\(=\dfrac{\left(\sqrt{a}-4\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)

b, \(P=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}=1+\dfrac{-2}{\sqrt{a}-2}\) nguyên\(< =>\sqrt{a}-2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

\(=>a\in\left\{9;1;16;0\right\}\)(TM)

 

5 tháng 7 2021

a) P = \(\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}+\dfrac{1}{2-\sqrt{a}}\left(ĐKXĐ:a\ge0;a\ne4\right)\)

P = \(\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}-\dfrac{1}{\sqrt{a}-2}\)

P = \(\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)

P = \(\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)

P  = \(\dfrac{\left(\sqrt{a}-4\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)

P = \(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) 

b) Ta có: P = \(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) = 1 - \(\dfrac{2}{\sqrt{a}-2}\)

Để \(P\in Z\) <=> 1 - \(\dfrac{2}{\sqrt{a}-2}\) \(\in Z\) <=> \(\sqrt{a}-2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)

Ta có bảng sau: 

\(\sqrt{a}-2\)          1          -1           2          -2
\(\sqrt{a}\)          3          1           4          0
a          9 (TM)          1 (TM)          16 (TM)          0 (TM)

Vậy để \(P\in Z\) thì  \(a\in\left\{0;1;9;16\right\}\)

Ở trên là - với + sao ở dưới là - với - ạ

 

a: \(A=\dfrac{2x-6\sqrt{x}+\sqrt{x}-3-2x+4\sqrt{x}+\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{3x-3\sqrt{x}-\sqrt{x}-4}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}-1}{3x-4\sqrt{x}-4}\)

\(=\dfrac{1}{\sqrt{x}-2}\cdot\dfrac{3x-6\sqrt{x}+2\sqrt{x}-4}{\sqrt{x}-1}=\dfrac{3\sqrt{x}+2}{\sqrt{x}-1}\)

b: Để A<2 thì \(\dfrac{3\sqrt{x}+2-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)}< 0\)

=>x<1

15 tháng 1 2022

=>x<1

26 tháng 7 2018

a. \(ĐKXĐ:a\ge0,a\ne2\)

\(H=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}+\dfrac{1}{2-\sqrt{a}}\)

\(H=\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(H=\dfrac{a-4-8-\sqrt{a}}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{\left(a-4\sqrt{a}\right)+\left(3\sqrt{a}-12\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(H=\dfrac{\sqrt{a}\left(\sqrt{a}-4\right)+3\left(\sqrt{a}-4\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{\left(\sqrt{a}-4\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)

b. Mk nghĩ là H < 2 chứ

\(H=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}< 2\)

\(\Leftrightarrow\dfrac{\sqrt{a}-4-2\sqrt{a}+4}{\sqrt{a}-2}=\dfrac{-\sqrt{a}}{\sqrt{a}-2}< 0\)

\(\Leftrightarrow\sqrt{a}-2>0\Leftrightarrow a>4\)

c. \(a^2+3a=0\Leftrightarrow a\left(a+3\right)=0\Leftrightarrow\left[{}\begin{matrix}a=0\left(n\right)\\a=-3\left(l\right)\end{matrix}\right.\)

Thay \(a=0\) và H ta được:

\(\dfrac{0-4}{0-2}=2\)

d. \(H=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}=5\Leftrightarrow\dfrac{\sqrt{a}-2-2}{\sqrt{a}-2}=5\Leftrightarrow1-\dfrac{2}{\sqrt{a}-2}=5\)

\(\Leftrightarrow\dfrac{2}{\sqrt{a}-2}=-4\Leftrightarrow-4\sqrt{a}+8=2\Leftrightarrow-4\sqrt{a}=-6\Leftrightarrow\sqrt{a}=\dfrac{3}{2}\Leftrightarrow a=\dfrac{9}{4}\)

3 tháng 4 2022

ĐK: \(a\ge0;a\ne4\)

a) ⇔ \(P=\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\dfrac{5}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\dfrac{\sqrt{a}+3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

⇔ \(P=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{\left(\sqrt{a}+3\right)\left(\sqrt{a}-4\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)

b) \(P< 1\Leftrightarrow\dfrac{\sqrt{a}-4}{\sqrt{a}-2}< 1\)

\(\Leftrightarrow\dfrac{\sqrt{a}-4}{\sqrt{a}-2}-1< 0\Leftrightarrow\dfrac{-2}{\sqrt{a}-2}< 0\)

Do \(-2< 0\) ⇔ \(\sqrt{a}-2< 0\Leftrightarrow a< 4\)

Kết hợp điều kiện ban đầu, ta có: \(0< a< 4\)

Vậy khi \(0< a< 4\) thì \(P< 1\)