Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{2\sqrt{a}-9-a+9+2a-4\sqrt{a}+\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)
\(=\dfrac{a-\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}=\dfrac{\sqrt{a}+1}{\sqrt{a}-3}\)
b: Khi a=3+2 căn 2 thì
\(A=\dfrac{\sqrt{2}+1+1}{\sqrt{2}+1-3}=\dfrac{2+\sqrt{2}}{\sqrt{2}-2}=\dfrac{\sqrt{2}+1}{1-\sqrt{2}}=-3-2\sqrt{2}\)
c: Để A<1 thì A-1<0
=>căn a+1-căn a+3/căn a-3<0
=>căn a-3<0
=>0<=a<9
a,bn viết đúng đề xíu nhé \(\dfrac{\sqrt{a}+2}{\sqrt{a+3}}\) sửa \(\dfrac{\sqrt{a}+2}{\sqrt{a}+3}\)
đk: \(a\ge0,a\ne4\)
=>\(P=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\dfrac{1}{\sqrt{a}-2}\)
\(=\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
\(=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)\(=\dfrac{\left(\sqrt{a}-4\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
\(=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)
b, \(P=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}=1+\dfrac{-2}{\sqrt{a}-2}\) nguyên\(< =>\sqrt{a}-2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(=>a\in\left\{9;1;16;0\right\}\)(TM)
a) P = \(\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}+\dfrac{1}{2-\sqrt{a}}\left(ĐKXĐ:a\ge0;a\ne4\right)\)
P = \(\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}-\dfrac{1}{\sqrt{a}-2}\)
P = \(\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)
P = \(\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)
P = \(\dfrac{\left(\sqrt{a}-4\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)
P = \(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)
b) Ta có: P = \(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) = 1 - \(\dfrac{2}{\sqrt{a}-2}\)
Để \(P\in Z\) <=> 1 - \(\dfrac{2}{\sqrt{a}-2}\) \(\in Z\) <=> \(\sqrt{a}-2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
Ta có bảng sau:
\(\sqrt{a}-2\) | 1 | -1 | 2 | -2 |
\(\sqrt{a}\) | 3 | 1 | 4 | 0 |
a | 9 (TM) | 1 (TM) | 16 (TM) | 0 (TM) |
Vậy để \(P\in Z\) thì \(a\in\left\{0;1;9;16\right\}\)
Bài 2:
a: \(A=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-\left(5\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
b: Thay \(x=5-2\sqrt{6}\) vào A, ta được:
\(A=\dfrac{-5\left(\sqrt{3}-\sqrt{2}\right)+2}{\sqrt{3}-\sqrt{2}+3}=\dfrac{-5\sqrt{3}+5\sqrt{2}+2}{\sqrt{3}-\sqrt{2}+3}\simeq0,124\)
d: Để A=1/2 thì \(\sqrt{x}+3=-10\sqrt{x}+4\)
\(\Leftrightarrow11\sqrt{x}=1\)
hay x=1/121
đkxđ a>=0 a khác 1
\(C=\left(\frac{a}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(C=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\sqrt{a}+3}{a-1}\)
\(C=\frac{\left(a-1\right).\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+3\right)}\)
b)
\(a=4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)
\(\sqrt{a}=\sqrt{3}-1\)
thay vào nha
c) \(C=\frac{\left(a-1\right).\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+3\right)}\)
để c<0 thì \(\frac{\left(a-1\right).\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+3\right)}< 0\)
mà \(\sqrt{a}\left(\sqrt{a}+3\right)>0\)
\(\left(a-1\right)\left(\sqrt{a}+1\right)< 0\)
mà \(\sqrt{a}+1>0\)
nên a-1<0
\(0\le a< 1\)
1) a) \(\sqrt{27}\) + \(\sqrt{75}\) - \(\sqrt{\dfrac{1}{3}}\) = \(3\sqrt{3}\) + \(5\sqrt{3}\) - \(\dfrac{\sqrt{3}}{3}\) = \(8\sqrt{3}\) - \(\dfrac{\sqrt{3}}{3}\)
= \(\dfrac{23\sqrt{3}}{3}\)
b) \(\sqrt{4+2\sqrt{3}}\) \(-\sqrt{4-2\sqrt{3}}\)
= \(\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1^2}\) \(-\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2}\)
= \(\sqrt{\left(\sqrt{3}+1\right)^2}\) \(-\sqrt{\left(\sqrt{3}-1\right)^2}\)
= \(\left(\sqrt{3}+1\right)\) \(-\left(\sqrt{3}-1\right)\)
= \(\sqrt{3}+1-\sqrt{3}+1\)
= 2
2) \(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{a-\sqrt{a}}\right)\) : \(\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{2}{a-1}\right)\)
= \(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right)\) : \(\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)
= \(\left(\dfrac{a-1}{\left(\sqrt{a}-1\right)\sqrt{a}}\right)\) : \(\left(\dfrac{\left(\sqrt{a}-1\right)+2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)
= \(\left(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\sqrt{a}}\right)\) : \(\left(\dfrac{\left(\sqrt{a}-1\right)+2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)
= \(\dfrac{\sqrt{a}+1}{\sqrt{a}}\) : \(\dfrac{2}{\sqrt{a}+1}\) = \(\dfrac{\sqrt{a}+1}{\sqrt{a}}\) . \(\dfrac{\sqrt{a}+1}{2}\) = \(\dfrac{\left(\sqrt{a}+1\right)^2}{2\sqrt{a}}\)
Lời giải:ĐK: $a\geq 0; a\neq 9; a\neq 4$
a)
\(A=\frac{2\sqrt{a}-9}{(\sqrt{a}-2)(\sqrt{a}-3)}-\frac{\sqrt{a}+3}{\sqrt{a}-2}+\frac{2\sqrt{a}+1}{\sqrt{a}-3}\)
\(\frac{2\sqrt{a}-9}{(\sqrt{a}-2)(\sqrt{a}-3)}-\frac{(\sqrt{a}+3)(\sqrt{a}-3)}{(\sqrt{a}-2)(\sqrt{a}-3)}+\frac{(2\sqrt{a}+1)(\ \sqrt{a}-2)}{(\sqrt{a}-3)(\sqrt{a}-2)}\)
\(=\frac{2\sqrt{a}-9-(a-9)+(2a-3\sqrt{a}-2)}{(\sqrt{a}-3)(\sqrt{a}-2)}=\frac{a-\sqrt{a}-2}{(\sqrt{a}-3)(\sqrt{a}-2)}=\frac{(\sqrt{a}-2)(\sqrt{a}+1)}{(\sqrt{a}-3)(\sqrt{a}-2)}=\frac{\sqrt{a}+1}{\sqrt{a}-3}\)
b) Để \(A< 1\Leftrightarrow \frac{\sqrt{a}+1}{\sqrt{a}-3}<1\Leftrightarrow 1+\frac{4}{\sqrt{a}-3}<1\)
\(\Leftrightarrow \frac{4}{\sqrt{a}-3}< 0\Leftrightarrow \sqrt{a}-3< 0\Leftrightarrow 0\leq a< 9\)
Kết hợp ĐKXĐ: suy ra $0\leq a< 9; a\neq 4$
c) Với $a$ nguyên, \(A=1+\frac{4}{\sqrt{a}-3}\in\mathbb{Z}\Leftrightarrow 4\vdots \sqrt{a}-3\)
$\Rightarrow \sqrt{a}-3\in\left\{\pm 1; \pm 2;\pm 4\right\}$
$\Rightarrow a\in\left\{4;16; 1;25; 49\right\}$
Kết hợp ĐKXĐ suy ra $a\in\left\{16;1;25;49\right\}$
ĐKXĐ: \(\left\{{}\begin{matrix}a\ge0\\a\notin\left\{4;9\right\}\end{matrix}\right.\)
a) Ta có: \(A=\dfrac{2\sqrt{a}-9}{a-5\sqrt{a}+6}-\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{2\sqrt{a}+1}{3-\sqrt{a}}\)
\(=\dfrac{\left(2\sqrt{a}-9\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}-\dfrac{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}+\dfrac{\left(2\sqrt{a}+1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}-2\right)}\)
\(=\dfrac{2\sqrt{a}-9-\left(a-9\right)+2a-4\sqrt{a}+\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)
\(=\dfrac{2a-\sqrt{a}-11-a+9}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)
\(=\dfrac{a-\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)
\(=\dfrac{a-2\sqrt{a}+\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}-2\right)+\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)
\(=\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)
\(=\dfrac{\sqrt{a}+1}{\sqrt{a}-3}\)
b) Để A<1 thì A-1<0
\(\Leftrightarrow\dfrac{\sqrt{a}+1}{\sqrt{a}-3}-1< 0\)
\(\Leftrightarrow\dfrac{\sqrt{a}+1}{\sqrt{a}-3}-\dfrac{\sqrt{a}-3}{\sqrt{a}-3}< 0\)
\(\Leftrightarrow\dfrac{\sqrt{a}+1-\sqrt{a}+3}{\sqrt{a}-3}< 0\)
\(\Leftrightarrow\dfrac{4}{\sqrt{a}-3}< 0\)
mà 4>0
nên \(\sqrt{a}-3< 0\)
\(\Leftrightarrow\sqrt{a}< 3\)
hay a<9
Kết hợp ĐKXĐ, ta được:
\(\left\{{}\begin{matrix}0\le a< 9\\a\ne4\end{matrix}\right.\)
Vậy: Để A<1 thì \(\left\{{}\begin{matrix}0\le a< 9\\a\ne4\end{matrix}\right.\)
c) Để A nguyên thì \(\sqrt{a}+1⋮\sqrt{a}-3\)
\(\Leftrightarrow\sqrt{a}-3+4⋮\sqrt{a}-3\)
mà \(\sqrt{a}-3⋮\sqrt{a}-3\)
nên \(4⋮\sqrt{a}-3\)
\(\Leftrightarrow\sqrt{a}-3\inƯ\left(4\right)\)
\(\Leftrightarrow\sqrt{a}-3\in\left\{1;-1;2;-2;4;-4\right\}\)
mà \(\sqrt{a}-3\ge-3\forall a\) thỏa mãn ĐKXĐ
nên \(\sqrt{a}-3\in\left\{1;-1;2;-2;4\right\}\)
\(\Leftrightarrow\sqrt{a}\in\left\{4;2;5;1;7\right\}\)
\(\Leftrightarrow a\in\left\{16;4;25;1;49\right\}\)
Kết hợp ĐKXĐ, ta được: \(a\in\left\{1;16;25;49\right\}\)
Vậy: Để A nguyên thì \(a\in\left\{1;16;25;49\right\}\)