giai pt \(x^2+\left(\dfrac{x}{x+1}\right)^2=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2-2m\left(x+\dfrac{1}{x}\right)-1+2m=0\)
Đặt \(x+\dfrac{1}{x}=t\Rightarrow\left|t\right|\ge2\)
\(\Rightarrow t^2-1-2mt+2m=0\)
\(\Leftrightarrow\left(t-1\right)\left(t+1\right)-2m\left(t-1\right)=0\)
\(\Leftrightarrow\left(t-1\right)\left(t+1-2m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=1\left(loại\right)\\t=2m-1\end{matrix}\right.\)
Pt có nghiệm \(\Leftrightarrow\left[{}\begin{matrix}2m-1\ge2\\2m-1\le-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m\ge\dfrac{3}{2}\\m\le-\dfrac{1}{2}\end{matrix}\right.\)
2.
Cộng vế với vế: \(3\left|x\right|=3\Rightarrow\left|x\right|=1\)
\(\Rightarrow\left|y\right|=-1< 0\) (không thỏa mãn)
Vậy hệ pt vô nghiệm
Đặt √(x + 1) = a
=> x = a² - 1
Thế lại rồi quy đồng được.
(a² - 1)² = (a + 1)(a² - 1 - 4)
<=> 6 - 2a = 0
<=> a = 3
=> x = 8
ĐKXĐ:\(\left\{{}\begin{matrix}x\ne-1\\x\ne0\end{matrix}\right.\)
\(\dfrac{x-1}{x+1}-\dfrac{1}{x}=\dfrac{-1}{x\left(x+1\right)}\\ \Leftrightarrow\dfrac{x\left(x-1\right)}{x\left(x+1\right)}-\dfrac{\left(x+1\right)}{x\left(x+1\right)}=\dfrac{-1}{x\left(x+1\right)}\\ \Leftrightarrow\dfrac{x^2-x-x-1}{x\left(x+1\right)}=\dfrac{-1}{x\left(x+1\right)}\\ \Leftrightarrow x^2-2x-1=-1\\ \Leftrightarrow x^2-2x=0\\ \Leftrightarrow x\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
Pt 1.
Bạn tham khảo phương trình 1 hộ mình nha. Chúc bạn học tốt
Bài 1:
\(\frac{(x+1)^4}{(x^2+1)^2}+\frac{4x}{x^2+1}=6\)
\(\Leftrightarrow \frac{(x+1)^4+4x(x^2+1)}{(x^2+1)^2}=6\)
\(\Leftrightarrow \frac{x^4+8x^3+6x^2+8x+1}{(x^2+1)^2}=6\Rightarrow x^4+8x^3+6x^2+8x+1=6(x^2+1)^2\)
\(\Leftrightarrow x^4+8x^3+6x^2+8x+1=6(x^4+2x^2+1)\)
\(\Leftrightarrow 5x^4-8x^3+6x^2-8x+5=0\)
\(\Leftrightarrow 5x^3(x-1)-3x^2(x-1)+3x(x-1)-5(x-1)=0\)
\(\Leftrightarrow (x-1)(5x^3-3x^2+3x-5)=0\)
\(\Leftrightarrow (x-1)[5(x-1)(x^2+x+1)-3x(x-1)]=0\)
\(\Leftrightarrow (x-1)^2(5x^2+2x+5)=0\)
Dễ thấy \(5x^2+2x+5>0\), do đó \((x-1)^2=0\Leftrightarrow x=1\)
Bài 2: ĐK: \(x\geq 0\)
\(A=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\)
\(A=\frac{\sqrt{x}(\sqrt{x^3}-1)}{x+\sqrt{x}+1}-\frac{\sqrt{x}(\sqrt{x^3}+1)}{x-\sqrt{x}+1}+x+1\)
\(A=\frac{\sqrt{x}(\sqrt{x}-1)(x+\sqrt{x}+1)}{x+\sqrt{x}+1}-\frac{\sqrt{x}(\sqrt{x}+1)(x-\sqrt{x}+1)}{x-\sqrt{x}+1}+x+1\)
\(A=\sqrt{x}(\sqrt{x}-1)-\sqrt{x}(\sqrt{x}+1)+x+1\)
\(A=x-2\sqrt{x}+1=(\sqrt{x}-1)^2\)
ĐK: \(x,y\ne0\)
\(\left\{{}\begin{matrix}x-\dfrac{1}{x^3}=y-\dfrac{1}{y^3}\\\left(x-4y\right)\left(2x-y+4\right)=-36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y-\left(\dfrac{1}{x^3}-\dfrac{1}{y^3}\right)=0\\\left(x-4y\right)\left(2x-y+4\right)=-36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y+\dfrac{\left(x-y\right)\left(x^2+y^2+xy\right)}{x^3y^3}=0\\\left(x-4y\right)\left(2x-y+4\right)=-36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\left(x-y\right)\left(x^3y^3+x^2+y^2+xy\right)}{x^3y^3}=0\\\left(x-4y\right)\left(2x-y+4\right)=-36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\\left(x-3x\right)\left(2x-x+4\right)=-36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\-2x^2-8x=-36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\x^2+4x-18=0\end{matrix}\right.\)
\(\Leftrightarrow x=y=-2\pm\sqrt{22}\left(tm\right)\)