Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt √(x + 1) = a
=> x = a² - 1
Thế lại rồi quy đồng được.
(a² - 1)² = (a + 1)(a² - 1 - 4)
<=> 6 - 2a = 0
<=> a = 3
=> x = 8
Bài 1:
\(\frac{(x+1)^4}{(x^2+1)^2}+\frac{4x}{x^2+1}=6\)
\(\Leftrightarrow \frac{(x+1)^4+4x(x^2+1)}{(x^2+1)^2}=6\)
\(\Leftrightarrow \frac{x^4+8x^3+6x^2+8x+1}{(x^2+1)^2}=6\Rightarrow x^4+8x^3+6x^2+8x+1=6(x^2+1)^2\)
\(\Leftrightarrow x^4+8x^3+6x^2+8x+1=6(x^4+2x^2+1)\)
\(\Leftrightarrow 5x^4-8x^3+6x^2-8x+5=0\)
\(\Leftrightarrow 5x^3(x-1)-3x^2(x-1)+3x(x-1)-5(x-1)=0\)
\(\Leftrightarrow (x-1)(5x^3-3x^2+3x-5)=0\)
\(\Leftrightarrow (x-1)[5(x-1)(x^2+x+1)-3x(x-1)]=0\)
\(\Leftrightarrow (x-1)^2(5x^2+2x+5)=0\)
Dễ thấy \(5x^2+2x+5>0\), do đó \((x-1)^2=0\Leftrightarrow x=1\)
Bài 2: ĐK: \(x\geq 0\)
\(A=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\)
\(A=\frac{\sqrt{x}(\sqrt{x^3}-1)}{x+\sqrt{x}+1}-\frac{\sqrt{x}(\sqrt{x^3}+1)}{x-\sqrt{x}+1}+x+1\)
\(A=\frac{\sqrt{x}(\sqrt{x}-1)(x+\sqrt{x}+1)}{x+\sqrt{x}+1}-\frac{\sqrt{x}(\sqrt{x}+1)(x-\sqrt{x}+1)}{x-\sqrt{x}+1}+x+1\)
\(A=\sqrt{x}(\sqrt{x}-1)-\sqrt{x}(\sqrt{x}+1)+x+1\)
\(A=x-2\sqrt{x}+1=(\sqrt{x}-1)^2\)
a. Bạn tự giải
b. \(\Leftrightarrow\left\{{}\begin{matrix}x-2y=4m-5\\4x+2y=6m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=4m-5\\5x=10m-5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2m-1\\y=-m+2\end{matrix}\right.\)
\(\dfrac{2}{x}-\dfrac{1}{y}=-1\Rightarrow\dfrac{2}{2m-1}-\dfrac{1}{-m+2}=-1\) (\(m\ne\left\{\dfrac{1}{2};2\right\}\))
\(\Leftrightarrow2\left(-m+2\right)-\left(2m-1\right)=\left(m-2\right)\left(2m-1\right)\)
\(\Leftrightarrow2m^2-m-3=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=\dfrac{3}{2}\end{matrix}\right.\)
a: \(\Leftrightarrow x^2+x-6+2x-6=10x-20+50\)
\(\Leftrightarrow x^2+3x-12-10x-30=0\)
\(\Leftrightarrow x^2-7x-42=0\)
\(\text{Δ}=\left(-7\right)^2-4\cdot1\cdot\left(-42\right)=217>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{7-\sqrt{217}}{2}\\x_2=\dfrac{7+\sqrt{217}}{2}\end{matrix}\right.\)
b: \(\Leftrightarrow x^2-3x+5=-x^2+4\)
\(\Leftrightarrow2x^2-3x+1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)
hay \(x\in\left\{\dfrac{1}{2};1\right\}\)
ĐKXĐ: ...
\(\Leftrightarrow\left\{{}\begin{matrix}xy+x+y+1=4xy\\\left(\dfrac{x}{y+1}\right)^2+\left(\dfrac{y}{x+1}\right)^2=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=4xy\\\left(\dfrac{x}{y+1}\right)^2+\left(\dfrac{y}{x+1}\right)^2=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(\dfrac{x}{y+1}\right)\left(\dfrac{y}{x+1}\right)=\dfrac{1}{4}\\\left(\dfrac{x}{y+1}\right)^2+\left(\dfrac{y}{x+1}\right)^2=\dfrac{1}{2}\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\dfrac{x}{y+1}=u\\\dfrac{y}{x+1}=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u^2+v^2=\dfrac{1}{2}\\uv=\dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow u^2-2uv+v^2=0\Leftrightarrow u=v=\pm\dfrac{1}{2}\)
TH1: \(u=v=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{y+1}=\dfrac{1}{2}\\\dfrac{y}{x+1}=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x-y=1\\x-2y=-1\end{matrix}\right.\) \(\Leftrightarrow...\)
Th2: \(u=v=-\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{y+1}=-\dfrac{1}{2}\\\dfrac{y}{x+1}=-\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x+y=-1\\x+2y=-1\end{matrix}\right.\) \(\Leftrightarrow...\)
\(\Leftrightarrow\dfrac{\left(x^2-3x+2\right)^2+\left(x^2+3x+2\right)^2}{\left(x^2-1\right)^2}-\dfrac{11\left(x^4-5x^2+4\right)}{\left(x^2-1\right)^2}=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)^2+\left(x^2+3x+2\right)^2-11\left(x^4-5x^2+4\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)^2-6x\left(x^2+2\right)+9x^2+\left(x^2+2\right)^2+6x\left(x^2+2\right)+9x^2-11\left(x^4-5x^2+4\right)=0\)
\(\Leftrightarrow2\left(x^2+2\right)^2+18x^2-11x^4+55x^2-44=0\)
\(\Leftrightarrow2\left(x^4+4x^2+4\right)-11x^4+73x^2-44=0\)
=>\(-9x^4+81x^2-36=0\)
=>9x^4-81x^2+36=0
=>x^4-9x^2+4=0
=>\(x^2=\dfrac{9\pm\sqrt{65}}{2}\)
=>\(x=\pm\sqrt{\dfrac{9\pm\sqrt{65}}{2}}\)
Đk:\(x\ge1;x\le-2\)
Đặt \(t=\left(x-1\right)\sqrt{\dfrac{x+2}{x-1}}\)
\(\Rightarrow t^2=\left(x-1\right)\left(x+2\right)\)
Pttt: \(t^2+4t=12\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-6\end{matrix}\right.\)
TH1: \(t=2\Rightarrow\left(x-1\right)\sqrt{\dfrac{x+2}{x-1}}=2\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1>0\\\left(x-1\right)\left(x+2\right)=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x>1\\x^2+x-6=0\end{matrix}\right.\)\(\Rightarrow x=2\) (thỏa mãn)
TH2:\(t=-6\Rightarrow\left(x-1\right)\sqrt{\dfrac{x+2}{x-1}}=-6\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1< 0\\\left(x-1\right)\left(x+2\right)=36\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x< 1\\x^2+x-38=0\end{matrix}\right.\)\(\Rightarrow x=\dfrac{-1-3\sqrt{17}}{2}\) (thỏa mãn)
Vậy...