phân tích đa thức thành nhân tử :(gợi ý : ko phải câu nào cũng có kết quả)
a)11x+11y+x^2+xy
b)225+x^2-4xy+y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(a,=11\left(x+y\right)+x\left(x+y\right)=\left(x+11\right)\left(x+y\right)\\ b,=225-\left(2x+y\right)^2=\left(15-2x-y\right)\left(15+2x+y\right)\)
Bài 2:
\(A=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\\ A=\left(72-2\right)\left(120-2\right)=70\cdot118=8260\)
Bài 3:
\(a,\Leftrightarrow\left(x+1\right)^2-\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x+1-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\\ b,\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\\ \Leftrightarrow24x+25=49\\ \Leftrightarrow24x=24\Leftrightarrow x=1\)
a, \(11x+11y+x^2+xy=\left(11x+11y\right)+\left(x^2+xy\right)=11\left(x+y\right)+x\left(x+y\right)=\left(x+y\right)\left(x+11\right)\)
b. \(255-4x^2-4xy-y^2=255-\left(4x^2+4xy+y^2\right)=255-\left(2x+y\right)^2=\left(15+2x+y\right)\left(15-2x-y\right)\)
Bài 2:
\(x^2-y^2-4x+4=\left(x^2-4x+4\right)-y^2=\left(x-2\right)^2-y^2=\left(x-2-y\right)\left(x-2+y\right)\)
\(=\left(72-2\right)\left(102-2\right)=70.100=7000\) ( x+y=102, x-y=72 )
a) Ta có: \(11x+11y+x^2+xy\)
\(=11\left(x+y\right)+x\left(x+y\right)\)
\(=\left(x+y\right)\left(11+x\right)\)
b) Ta có: \(225-4x^2-4xy-y^2\)
\(=225-\left(4x^2+4xy+y^2\right)\)
\(=15^2-\left(2x+y\right)^2\)
\(=\left(15-2x-y\right)\left(15+2x+y\right)\)
\(2,=x^2-3^2=\left(x-3\right)\left(x+3\right)\\ 3,=\left(x+y-x+y\right)\left(x+y+x-y\right)\\ =2y\cdot2x=4xy\)
Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn.
Lời giải:
a. $x^3-4x^2+x+6=(x^3-2x^2)-(2x^2-4x)-(3x-6)$
$=x^2(x-2)-2x(x-2)-3(x-2)=(x-2)(x^2-2x-3)$
$=(x-2)[(x^2+x)-(3x+3)]=(x-2)[x(x+1)-3(x+1)]$
$=(x-2)(x+1)(x-3)$
-------------------
b.
$x^3+7x^2+14x+8=(x^3+x^2)+(6x^2+6x)+(8x+8)$
$=x^2(x+1)+6x(x+1)+8(x+1)=(x+1)(x^2+6x+8)$
$=(x+1)[(x^2+2x)+(4x+8)]=(x+1)[x(x+2)+4(x+2)]$
$=(x+1)(x+2)(x+4)$
Câu a bạn xem lại đề bài nhé. Đa thức đề cho thậm chí còn không có nghiệm hữu tỉ luôn cơ.
b) Lập sơ đồ Horner:
1 | 7 | 14 | 8 | |
\(x=-1\) | 1 | 6 | 8 | 0 |
\(\Rightarrow x^3+7x^2+14x+8=\left(x+1\right)\left(x^2+6x+8\right)\)
Ta thấy đa thức \(g\left(x\right)=x^2+6x+8\), dự đoán được 1 nghiệm \(x=-2\). Ta lại lập sơ đồ Horner:
1 | 6 | 8 | |
\(x=-2\) | 1 | 4 | 0 |
\(\Rightarrow g\left(x\right)=\left(x+2\right)\left(x+4\right)\)
Vậy đa thức đã cho có thể được phân tích thành \(\left(x+1\right)\left(x+2\right)\left(x+4\right)\)
a) 11x + 11y + x2 + xy
= 11.(x+y) + x.(x+y)
= (x+y).(11+x)
b) 255 + x2 - 4xy + y2
= 255 + 2xy + x2 -2xy + y2
= 255 + 2xy + (x-y)2
...