K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2021

Bài 1:

\(a,=11\left(x+y\right)+x\left(x+y\right)=\left(x+11\right)\left(x+y\right)\\ b,=225-\left(2x+y\right)^2=\left(15-2x-y\right)\left(15+2x+y\right)\)

Bài 2:

\(A=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\\ A=\left(72-2\right)\left(120-2\right)=70\cdot118=8260\)

Bài 3:

\(a,\Leftrightarrow\left(x+1\right)^2-\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x+1-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\\ b,\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\\ \Leftrightarrow24x+25=49\\ \Leftrightarrow24x=24\Leftrightarrow x=1\)

thk you very much UwU

2 tháng 11 2021

a) \(3xy^2-12x\)

\(=3x\left(y^2-4\right)\)

 

Bài 1:

b: \(=\left(x-2y\right)\left(x+2y\right)+4\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y+4\right)\)

c: \(=\left(x+y-3\right)\left(x+y+3\right)\)

Bài 1: 

a: \(3xy^2-12x=3x\left(y^2-4\right)=3x\left(y-2\right)\left(y+2\right)\)

b: \(x^2-4y^2+4x+8y\)

\(=\left(x-2y\right)\left(x+2y\right)+4\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y+4\right)\)

16 tháng 10 2021

a,x^2-x-y^2-y

=x^2-y^2-(x+y)

=(x-y).(x+y)-(x+y)

=(x+y).(x-y-1)

b, x^2-2xy+y^2-z^2

=(x^2-2xy+y^2)-z^2

=(x-y)^2-z^2

=(x-y-z)(x-y+z)

c,5x-5y+ax-ay( đề bài ở đây phải là -ay ms tính đc)

=(5x-5y)+(ax-ay)

=5(x-y)+a(x-y)

=(x-y).(5+a)

d,a^3-a^2.x-ay+xy

=(a^3-a^2x)-(ay-xy)

=a^2(a-x)-y(a-x)

=(a-x)(a^2-y)

e,4x^2-y^2+4x+1

={(2x)^2+4x+1}-y^2

=(2x+1)^2-y^2

=(2x+1+y^2)(2x+1-y^2)

f,x^3-x+y^3-y

=(x^3+y^3)-(x+y)

=(x+y)(x^2-xy+y^2)-(x+y)

=(x+y)(x^2-xy+y^2-1)

 

                     

12 tháng 10 2021

Bài 2: 

a: \(3x^2-3xy=3x\left(x-y\right)\)

b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)

c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)

d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)

18 tháng 10 2021

ỳtct7ct7c7c7t79tc9

 

Bài 1: 

a: Ta có: \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)

\(=\left(2x+1\right)\left(3-2x+5\right)\)

\(=\left(2x+1\right)\left(8-2x\right)\)

\(=2\left(4-x\right)\left(2x+1\right)\)

b) Ta có: \(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)

\(=\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-\left(3x-2\right)\left(2x+2\right)\)

\(=\left(3x-2\right)\left(4x-3+x-1-2x-2\right)\)

\(=\left(3x-2\right)\left(3x-6\right)\)

\(=3\left(3x-2\right)\left(x-2\right)\)

Bài 2: 

a: Ta có: \(\left(a-b\right)\left(a+2b\right)-\left(b-a\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)

\(=\left(a-b\right)\left(a+2b\right)+\left(a-b\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)

\(=\left(a-b\right)\left(a+2b+2a-b-a-3b\right)\)

\(=\left(a-b\right)\left(2a-4b\right)\)

\(=2\left(a-b\right)\left(a-2b\right)\)

f: Ta có: \(x^2-6xy+9y^2+4x-12y\)

\(=\left(x-3y\right)^2+4\left(x-3y\right)\)

\(=\left(x-3y\right)\left(x-3y+4\right)\)

19 tháng 10 2019

a, \(11x+11y+x^2+xy=\left(11x+11y\right)+\left(x^2+xy\right)=11\left(x+y\right)+x\left(x+y\right)=\left(x+y\right)\left(x+11\right)\)

b. \(255-4x^2-4xy-y^2=255-\left(4x^2+4xy+y^2\right)=255-\left(2x+y\right)^2=\left(15+2x+y\right)\left(15-2x-y\right)\)

Bài 2:

\(x^2-y^2-4x+4=\left(x^2-4x+4\right)-y^2=\left(x-2\right)^2-y^2=\left(x-2-y\right)\left(x-2+y\right)\)

\(=\left(72-2\right)\left(102-2\right)=70.100=7000\) ( x+y=102, x-y=72 )

21 tháng 12 2021

a)\(=\left(x^2+2x+1\right)-y^2=\left(x+1\right)^2-y^2=\left(x+1+y\right)\left(x+1-y\right)\)

b)\(=\left(x+9\right)^2-\left(6x\right)^2=\left(x+9-6x\right)\left(x+9+6x\right)=\left(-5x+9\right)\left(7x+9\right)\)

c)\(=\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)=\left(x-y\right)^2-\left(z-t\right)^2\\ =\left(x-y+z-t\right)\left(x-y-z+t\right)\)

 

21 tháng 12 2021

a: =(x+1-y)(x+1+y)

19 tháng 11

Cưu là mình vs (x^2+x)^2-2(x^2+x)-15

a: Ta có: \(x^2-6x+9-y^2\)

\(=\left(x-3\right)^2-y^2\)

\(=\left(x-y-3\right)\left(x+y-3\right)\)

b: Ta có: \(x^3+4x^2+4x\)

\(=x\left(x^2+4x+4\right)\)

\(=x\left(x+2\right)^2\)

c: Ta có: \(4xy-4x^2-y^2+9\)

\(=-\left(4x^2-4xy+y^2-9\right)\)

\(=-\left(2x-y-3\right)\left(2x-y+3\right)\)