Rút gọn phân thức đại số:
\(A=\dfrac{3x^2+5xy-2y^2}{3x^2-7xy+2y^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{3x^2+5xy-2y^2}{3x^2-7xy+2y^2}\)
\(=\dfrac{3x^2-xy+6xy-2y^2}{3x^2-xy-6xy+2y^2}\)
\(=\dfrac{x\left(3x-y\right)+2y\left(3x-y\right)}{x\left(3x-y\right)-2y\left(3x-y\right)}\)
\(=\dfrac{\left(x+2y\right)\left(3x-y\right)}{\left(x-2y\right)\left(3x-y\right)}\)
\(=\dfrac{x+2y}{x-2y}\)
a, \(\dfrac{x^3+27}{x^2-3x+9}=\dfrac{x+3}{M}\Leftrightarrow\dfrac{\left(x+3\right)\left(x^2-3x+9\right)}{x^2-3x+9}=\dfrac{x+3}{M}\)
\(\Rightarrow M=\dfrac{x+3}{x+3}=1\)
b, \(\dfrac{M}{x+4}=\dfrac{x^2-8x+16}{16-x^2}=\dfrac{\left(x-4\right)^2}{\left(4-x\right)\left(x+4\right)}=\dfrac{4-x}{x+4}\)
\(\Rightarrow M=\dfrac{\left(4-x\right)\left(x+4\right)}{x+4}=4-x\)
c, tương tự
c: \(=\dfrac{3x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^2+1\right)}=\dfrac{3x}{x^2+1}\)
a: =>A-B=3x^2y-4xy^2+x^2y-2xy^2=4x^2y-6xy^2
b: =>B-A=-7xy^2+8x^2y-5xy^2+6x^2y=-12xy^2+14x^2y
=>A-B=12xy^2-14x^2y
c: =>B-A=8x^2y^3-4x^3y-3x^2y^3+5x^3y^2=5x^2y^3+x^3y^2
=>A-B=-5x^2y^3-x^3y^2
d: =>A-B=2x^2y^3-7x^3y+6x^2y^3+3x^3y^2=8x^2y^3-7x^3y+3x^3y^2
Bài 1:
a, (\(x\) - 4).(\(x\) + 4) - (5 - \(x\)).(\(x\) + 1)
= \(x^2\) - 16 - 5\(x\) - 5 + \(x^2\) + \(x\)
= (\(x^2\) + \(x^2\)) - (5\(x\) - \(x\)) - (16 + 5)
= 2\(x^2\) - 4\(x\) - 21
b, (3\(x^2\) - 2\(xy\) + 4) + (5\(xy\) - 6\(x^2\) - 7)
= 3\(x^2\) - 2\(xy\) + 4 + 5\(xy\) - 6\(x^2\) - 7
= (3\(x^2\) - 6\(x^2\)) + (5\(xy\) - 2\(xy\)) - (7 - 4)
= - 3\(x^2\) + 3\(xy\) - 3
\(A=\frac{3x^2+5xy-2y^2}{3x^2-7xy+2y^2}=\frac{6xy-2y^2+3x^2-xy}{2y^2-6xy-xy+3x^2}\)
\(=\frac{2y\left(3x-y\right)+x\left(3x-y\right)}{2y\left(y-3x\right)-x\left(y-3x\right)}\)
\(=\frac{\left(3x-y\right)\left(2y+x\right)}{\left(y-3x\right)\left(2y-x\right)}=\frac{-1\left(3x-y\right)\left(2y+x\right)}{\left(y-3x\right)\left(-1\right)\left(2y-x\right)}\)
\(=\frac{\left(-3x+y\right)\left(2y+x\right)}{\left(y-3x\right)\left(-2y+x\right)}=\frac{\left(y-3x\right)\left(2y+x\right)}{\left(y-3x\right)\left(x-2y\right)}=\frac{2y+x}{x-2y}\)