cho tam giác abc vuông ở a , đường cao ah . gọi d và e lần lượt là hình chiếu của h trên các cạnh ab và ac
a) chứng minh ad nhân ab=ae nhân ac
b) gọi m, n lần lượt là trung điểm của bh và ch . chứng minh de là tiếp tuyến chung của hai đường tròn (m;md) và (n;ne)
c) gọi p là trung điểm của mn , q là giao điểm của de và ah . giả sử ab=6cm , ac = 8cm . tính độ dài cạnh pq
a: AD*AB=AH^2
AE*AC=AH^2
Do đó: AD*AB=AE*AC
b: góc NED=góc NEH+góc DEH
=góc CHE+góc HAB
=góc CBA+góc HAB
=90 độ
=>ED là tiếp tuyến của (N)
góc EDM=góc EDH+góc MDH
=góc HAC+góc MHB
=góc hAC+góc BCA
=90 độ
=>ED là tiếp tuyến của (M)