Tìm giá trị lớn nhất của:
P=\(\dfrac{x+16}{\sqrt{x}+3}\)
Help me!!! Mai mình phải nộp rùi huhu.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x^2+15}{x^2+3}=\frac{x^2+3}{x^2+3}+\frac{12}{x^2+3}=1+\frac{12}{x^2+13}\)
ĐỂ A ĐẠT GTLN <=> \(\frac{12}{x^2+3}\)ĐẠT GTLN <=> \(x^2+3\)PHẢI ĐẠT GTNN
XÉT \(\frac{12}{x^2+3}\)CÓ: \(x^2\ge0\Rightarrow x^2+3\ge3\)DẤU "=" XẢY RA <=> \(x=0\)
TẠI x=0 => \(\frac{12}{x^2+3}=\frac{12}{3}=4\)
=> MaxA=1+4=5 khi x=0
\(-5x-x^2-20\)
\(\Rightarrow-x^2-5x-20\)
\(\Rightarrow-\left(x^2+5x+20\right)\)
\(\Rightarrow-\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}+\frac{55}{4}\right)\)
\(\Rightarrow-\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}\right)-\frac{55}{4}\)
\(\Rightarrow-\left(x+\frac{5}{2}\right)^2-\frac{55}{4}\)
Ta có \(-\left(x+\frac{5}{2}\right)^2\le0\)
\(\Rightarrow-\left(x+\frac{5}{2}\right)^2-\frac{55}{4}\le-\frac{55}{4}\)
Vậy \(-5x-x^2-20\) có GTLN là \(-\frac{55}{4}\)
Khi \(\left(x+\frac{5}{2}\right)^2=0\)\(\Rightarrow x+\frac{5}{2}=0\)\(\Rightarrow x=-\frac{5}{2}\)
Ta có: 160 + x và 240 - x chia hết cho x
Vì x chia hết cho x nên 160 và 240 chia hết cho x
ƯC (160; 240) = {1;2;4;5;...;80}
Vì x lớn nhất nên x = 80.
do 24 chia hết cho x,36 chia hết cho x,160 chia hết cho x
suy ra x thuộc ƯC(24,36,160)
Mà x lớn nhất nên x=ƯCLN(24,36,160)=8
Vậy x=8
Để A là số nguyên thì \(x-3\sqrt{x}+2\sqrt{x}-6+7⋮\sqrt{x}-3\)
=>\(\sqrt{x}-3\in\left\{1;-1;7;-7\right\}\)
=>\(x\in\left\{16;4;100\right\}\)
a)Ta có :
3x chia hết cho x+1
=>3x+3-3 chia hết cho x+1
=>-3 chia hết cho x+1
=>x+1 thuộc Ư(-3)
=>x+1 thuộc {1;-1;3;-3}
=>x thuộc {0;-2;2;-4}
b)Ta có :
5x+2 chia hết cho x+1
=>5x+5-3 chia hết cho x+1
=>-3 chia hết cho x+1
=>x+1 thuộc Ư(-3)
=>x+1 thuộc {1;-1;3;-3}
=>x thuộc {0;-2;2;-4}
Ta có: |a| - |b| \(\le\) |a - b|
Do đó: |x - 1004| - |x + 1003| \(\le\) |x - 1004 - x - 1003|
\(\le\) 2007
Vậy GTLN của A là 2007 khi x = -1013
ĐKXĐ: \(x\ge0\)
\(P=\dfrac{x+16}{\sqrt{x}+3}\)
\(\Leftrightarrow P=\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+25}{\sqrt{x}+3}\)
\(\Leftrightarrow P=\sqrt{x}-3+\dfrac{25}{\sqrt{x}+3}\)
Để P đạt GTLN thì \(\sqrt{x}+3\) đạt già trị nhỏ nhất.
Ta có: \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+3\ge3\)
Vậy GTNN \(\sqrt{x}+3=3\)
Dấu '=' xảy ra khi x=0
Vậy GTLN của \(P=0-3+\dfrac{25}{3}=\dfrac{16}{3}\) khi x=0